• Title/Summary/Keyword: Satellite Image Analysis

Search Result 809, Processing Time 0.028 seconds

Estimation of Simulated Radiances of the OSMI over the Oceans (대양에서의 OSMI 모의 복사량 산출)

  • 임효숙;김용승;이동한
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.227-238
    • /
    • 1999
  • In advance of launch, simulated radiances of the Ocean Scanning Multispectral Imager (OSMI) will be very useful to guess the real imagery of OSMI and to prepare for data processing of OSMI. The data processing system for OSMI which is one of sensors aboard Korea Multi-Purpose Satellite (KOMPSAT) scheduled for launch in 1999 is developed based on the SeaWiFS Data Analysis System (SeaDAS). Simulation of radiances requires information on the spectral band, orbital and scanning characteristics of the OSMI and KOMPSAT spacecraft. This paper also describes a method to create simulated radiances of the OSMI over the oceans. Our method for constructing a simulated OSMI imagery is to propagate a KOMPSAT orbit over a field of Coastal Zone Color Scanner (CZCS) pigment concentrations and to use the values and atmospheric components for calculation of total radiances. A modified Brouwer-Lyddane model with drag was used for the realistic orbit prediction, the CZCS pigment concentrations were used to compute water-leaving radiances, and a variety of radiative transfer models were used to calculate atmospheric contributions to total radiances detected by OSMI. Imagery of the simulated OSMI radiances for 412, 443, 490, 555, 765, 865nm was obtained. As expected, water-leaving radiances were only a small fraction (below 10%) of total radiances and sun glint contaminations were observed near the solar declination. Therefore, atmospheric correction is critical in the calculation of pigment concentration from total radiances. Because the imagery near the sun's glitter pattern is virtually useless and must be discarded, more advanced data collection planning will be required to succeed in the mission of OSMI which is consistent monitoring of global oceans during three year mission lifetime.

Application of Eco-friendly Planning of Sinseo Innovation City in Daegu using the Analysis of Satellite Image and Field Survey (위성영상 분석과 현장조사를 통한 대구 신서혁신도시의 친환경적 도시계획의 적용 검토)

  • Kim, Jiyeong;Kim, Eun Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.143-156
    • /
    • 2019
  • The purpose of this study is to examine whether the Sinseo Innovation City of Daegu has been eco-friendly developed by analyzing changes in NDVI (Normalized Difference Vegetation Index) and LST (Land Surface Temperature) and conducting field surveys. Using Landsat satellite images, it compares NDVI and LST changes between the years of 2008 and 2018. The results of the study are as follows. First, the NDVI has decreased by 0.07 and the zLST has increased by $0.85^{\circ}C$ over the past 10 years. Second, districts with lower NDVI and higher zLST were concentrated with infrastructure with impermeable materials. Districts with higher NDVI and lower zLST were utilized urban design techniques such as permeable parking lot, green roof, and permeable pavement. Third, districts with higher NDVI and lower zLST were applied eco-friendly planning items properly by district unit plan guideline. It is meaningful to suggest planing directions and urban planning elements considering the environmental friendly development.

Accuracy Evaluation of Earthwork Volume Calculation According to Terrain Model Generation Method (지형모델 구축 방법에 따른 토공물량 산정의 정확도 평가)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • Calculation of quantity at construction sites is a factor that has a great influence on construction costs, and it is important to calculate accurate values. In this study, topographic model was created by using drone photogrammetry and drone LiDAR to estimate earthwork volume. ortho image and DSM (Digital Surface Model) were constructed for the study area by drone photogrammetry, and DEM (Digital Elevation Model) of the target area was established using drone LiDAR. And through accuracy evaluation, accuracy of each method are 0.034m, 0.35m in horizontal direction, 0.054m, 0.25m in vertical direction. Through the research, the usability of drone photogrammetry and drone LiDAR for constructing geospatial information was presented. As a result of calculating the volume of the study site, the UAV photogrammetry showed a difference of 1528.1㎥ from the GNSS (Global Navigation Satellite System) survey performance, and the 3D Laser Scanner showed difference of 160.28㎥. The difference in the volume of earthwork is due to the difference in the topographic model, and the efficiency of volume calculation by drone LiDAR could be suggested. In the future, if additional research is conducted using GNSS surveying and drone LiDAR to establish topographic model in the forest area and evaluate its usability, the efficiency of terrain model construction using drone LiDAR can be suggested.

Analysis of Changes in the Land Surface Temperature according to Tree Planting Campaign to reduce Urban Heat Island - A Case Study for Gumi, South Korea - (도시열섬 완화를 위한 나무심기운동에 따른 지표면 온도 변화 분석 - 구미시를 사례로 -)

  • KIM, Kyunghun;KIM, Hung Soo;KWON, Yong-Ha;PARK, Insun;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.16-27
    • /
    • 2022
  • Due to climate change, temperature is rising worldwide. Since rapid growth has been achieved focused on cities, South Korea is experiencing serious environmental problems such as heat island and air pollution in urban areas. To solve this problem, the central and each local government are actively promoting tree planting campaigns. This study quantitatively calculated changes in green areas and vegetation of Gumi by the tree planting campaign, and analyzed the temperature changes accordingly. For the target area, the green area, vegetation index, and ground temperature were calculated for 4 different time periods using the given Landsat satellite images. As a result of the study, the green area of was increased by 7.24km2 and 4.93km2 for two regions, respectively. Accordingly, the vegetation index increased by 0.14 to 0.16, and the temperature decreased by 0.8 to 1.2℃. The Tree planting campaign not only plays a role in lowering the temperature of the city but also does various roles such as air purification, carbon absorption, and providing green rest areas to citizens. Therefore the campaign should be carried out continuously.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

Correlations between Spatial Distribution of Alien Plants and Land Cover - Focused on National Ecosystem Survey - (외래식물의 공간분포와 토지피복간의 상관성 연구 - 전국자연환경조사 자료를 중심으로 -)

  • Jung, Tae-Jun;Shin, Hyun-Chul;Shin, Young-Kyu;Kim, Myung-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.455-466
    • /
    • 2013
  • The aim of this study is to seek application plans of National Ecosystem Survey database based on comparison and examination of feasible analysis methods for distribution characteristics of alien plants. In order to set up a correlation analysis method between alien plants and environmental factors, we had reviewed the 3rd National Ecosystem Survey guide book and consequently, two kinds of analysis method were tested. One was 1/25,000 scale map boundary based analysis and the other was representative mountain area based analysis. In this study we restricted the research area to select reliable surveyed database from whole "2011 National Ecosystem Survey flora database" according to two major criteria. First, an area defined by 1/25,000 scale map boundary and representative mountain area where the number of surveyed flora records should be within top 20%. Second, land cover map should also be built up inside that area. As a result, 25 map boundaries and 25 representative mountain areas were extracted to be analyzed. To limit a boundary for every representative mountain area we had analyzed distribution of environmental factors around that area by manual inspection with SPOT-5 remote sensed satellite image then designated 3km buffer zone from each alien plant location in that area. After then, naturalized index (NI) and urbanized index (UI) was calculated and correlations analysis was carried out. With the result of correlation analysis by map boundary only agricultural land area showed significant value of r (0.4~0.6, correlated) and the rest of factors did not. In the case of representative mountain area, the result showed that agricultural land, road and forest area showed significant value of r (0.6~0.8, highly correlated) which was corresponding to existing researches. Therefore, representative mountain area based method is preferable when using the alien plants database of National Ecosystem Survey for species distribution analysis. And also, considering the way of database utilization is strongly suggested at the first stage of survey planning for promoting active use of national ecosystem survey database.

Cloud-cell Tracking Analysis using Satellite Image of Extreme Heavy Snowfall in the Yeongdong Region (영동지역의 극한 대설에 대한 위성관측으로부터 구름 추적)

  • Cho, Young-Jun;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.83-107
    • /
    • 2014
  • This study presents spatial characteristics of cloud using satellite image in the extreme heavy snowfall of the Yeongdong region. 3 extreme heavy snowfall events in the Yeongdong region during the recent 12 years (2001 ~ 2012) are selected for which the fresh snow cover exceed 50 cm/day. Spatial characteristics (minimum brightness temperature; Tmin, cloud size, center of cloud-cell) of cloud are analyzed by tracking main cloud-cell related with these events. These characteristics are compared with radar precipitation in the Yeongdong region to investigate relationship between cloud and precipitation. The results are summarized as follows, selected extreme heavy snowfall events are associated with the isolated, well-developed, and small-scale convective cloud which is developing over the Yeongdong region or moving from over East Korea Bay to the Yeongdong region. During the period of main precipitation, cloud-cell Tmin is low ($-40{\sim}-50^{\circ}C$) and cloud area is small (17,000 ~ 40,000 $km^2$). Precipitation area (${\geq}$ 0.5 mm/hr) from radar also shows small and isolated shape (4,000 ~ 8,000 $km^2$). The locations of the cloud and precipitation are similar, but in there centers are located closely to the coast of the Yeongdong region. In all events the extreme heavy snowfall occur in the period a developed cloud-cell was moving into the coastal waters of the Yeongdong. However, it was found that developing stage of cloud and precipitation are not well matched each other in one of 3 events. Water vapor image shows that cloud-cell is developed on the northern edge of the dry(dark) region. Therefore, at the result analyzed from cloud and precipitation, selected extreme heavy snowfall events are associated with small-scale secondary cyclone or vortex, not explosive polar low. Detection and tracking small-scale cloud-cell in the real-time forecasting of the Yeongdong extreme heavy snowfall is important.

Effects of Areal Interpolation Methods on Environmental Equity Analysis (면내삽법이 환경적 형평성 분석에 미치는 영향)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.6
    • /
    • pp.736-751
    • /
    • 2008
  • Although a growing number of studies have commonly used a simple areal weighting interpolation method to quantify demographic characteristics of impacted areas in environmental equity analysis, the results obtained are inevitably imprecise because of the method's unrealistic assumption that population is evenly distributed within a census enumeration unit. Two alternative areal interpolation methods such as intelligent areal weighting and regression methods can account for the distributional biases in the estimation of impacted populations by making use of additional information about the geographic distribution of population. This research explores five areal interpolation methods for estimating the population characteristics of impacted areas in environmental equity analysis and evaluates the sensitivity of the outcomes of environmental equity analysis to areal interpolation methods. This study used GIS techniques to allow areal interpolation to be informed by the distribution of land cover types, as inferred from a satellite image. in both the source and target units. Independent samples t-test statistics were measured to verify the environmental equity hypothesis while coefficients of variation were calculated to compare the relative variability and consistency in the socioeconomic characteristics of populations at risk over different areal interpolation methods. Results show that the outcomes of environmental equity analysis in the study area are not sensitive to the areal interpolation methods used in estimating affected populations, but the population estimates within the impacted areas are largely variable as different areal interpolation methods are used. This implies that the use of different areal interpolation methods may to some degree alter the statistical results of environmental equity analysis.

  • PDF

Spectral Mixture Analysis Using Hyperspectral Image for Hydrological Land Cover Classification in Urban Area (도시지역의 수문학적 토지피복 분류를 위한 초분광영상의 분광혼합분석)

  • Shin, Jung-Il;Kim, Sun-Hwa;Yoon, Jung-Suk;Kim, Tae-Geun;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.565-574
    • /
    • 2006
  • Satellite images have been used to obtain land cover information that is one of important factors for hydrological analysis over a large area. In urban area, more detailed land cover data are often required for hydrological analysis because of the relatively complex land cover types. The number of land cover classes that can be classified with traditional multispectral data is usually less than the ones required by most hydrological uses. In this study, we present the capabilities of hyperspectral data (Hyperion) for the classification of hydrological land cover types in urban area. To obtain 17 classes of urban land cover defined by the USDA SCS, spectral mixture analysis was applied using eight endmembers representing both impervious and pervious surfaces. Fractional values from the spectral mixture analysis were then reclassified into 17 cover types according to the ratio of impervious and pervious materials. The classification accuracy was then assessed by aerial photo interpretation over 10 sample plots.

Geology and Geochemistry of Volcanic and Sedimentary Rocks from Deep Borehole in the Heunghae area, North Kyungsang Province (경북 흥해지역 심부시추공의 화산암 및 퇴적암류의 지질 및 지화학적 연구)

  • Lee, Chang-Bum;Kim, Tong-Kwon;Park, Deok-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.459-474
    • /
    • 2009
  • By the analysis of discontinuity at the outcrop and lineament on the satellite image, the joints have deeply relationship with the lineaments. The joint spaces at the drilling core are mostly 1~20 cm but at the rhyolite which is distributed near fault they have more closely. These volcanic rocks belong to the subalkaline series tuff, rhyolite, basalt in the study area from the diagram of $Nb/Y-Zr/TiO_2$. The composition diagram of Hf/3-Th-Nb/16 show destructive plate-margin basalt and their differentiates. The environment of formation of volcanics are normal continental arc. Most of LREE show high enriched pattern but HREE show depleted pattern. The K/Ar age of intermediate volcanics, tuff, rhyolite, crystal tuff are 55.3Ma, 77.25 Ma~91.22Ma, 63.16~64.39Ma, 54.49 Ma respectively.