• Title/Summary/Keyword: Satellite High Agile Maneuver

Search Result 6, Processing Time 0.017 seconds

A Study on High Agile Satellite Maneuver using Reaction Wheels and CMGs (반작용휠과 제어모멘트자이로를 이용한 위성 고기동 연구)

  • Son, Jun-Won;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.107-119
    • /
    • 2013
  • We study three axis attitude control method including two axis high agile maneuver using four reaction wheels and two control moment gyros. We investigate singularity conditions due to two control moment gyros and propose singularity escape method. Based on this, we propose actuator control algorithm for high agile maneuver. Also, we propose actuator momentum management method which preserves momentum of reaction wheels and control moment gyroscopes before and after satellite attitude control. Through numerical simulation, we show that our method achieves three axis attitude control including two axis high agile maneuver and preserves actuators' momentum.

A Study on High Agile Satellite Maneuver through Sequential Activation of Control Moment Gyros and Reaction Wheels (제어모멘트자이로와 반작용휠의 순차적 사용을 통한 위성 고기동 연구)

  • Son, Jun-Won;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.18-28
    • /
    • 2014
  • We assume that two control moment gyros are installed for space qualification in a satellite with four reaction wheels, and study the high agile maneuver method. Using high torque control moment gyros, we reduce the satellite's attitude error. After that, we activate reaction wheels to control remaining attitude error. This proposed method can avoid singularity problem of control moment gyros, and do not require gimbals' angle to calculate torque command. Through numerical simulations, we show that our method's agile performance is similar to previous method and reduce the reaction wheels' required momentum.

Five Reaction Wheel Operation Method for Active SAR Satellite (능동 합성개구레이더위성의 다섯 개 반작용휠 운용방법)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.806-813
    • /
    • 2016
  • For satellite attitude control and maneuver, normally four reaction wheels are used through pyramid configuration. However, if satellite's moment of inertia is large or available reaction wheels' capability is small, we can consider using five reaction wheels. In this case, we should think the arrangement of wheels and their operation method. Active SAR satellite requires high agile maneuver about roll axis to achieve looking angle change. In this research, we study the operation method of five reaction wheels configuration for fast roll maneuver.

Analysis on Mission and Maneuver in High Resolution Satellite with TDI (TDI를 사용하는 고해상도 위성의 임무 및 기동 분석)

  • 김희섭;김규선;김응현;정대원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.53-59
    • /
    • 2006
  • Need for agile satellite increases for performing various mission due to increase of satellite image applications and users. In high resolution satellite TDI (time delay and integration) method is adopted in order to improve SNR. But image quality can be degraded by satellite maneuver. In this paper requirements for remote sensing in high resolution satellite with agility are extracted and an approach to operate the agile satellite to perform the missions are proposed. The proposed approach in this paper will be applicable to system level design and analysis.

Spatial Resolution Improvement Using Over Sampling and High Agile Maneuver in Remote Sensing Satellite

  • Kim, Hee-Seob;Kim, Gyu-Sun;Chung, Dae-Won;Kim, Eung-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • Coordination of multiple UAVs is an essential technology for various applications in robotics, automation, and artificial intelligence. In general, it includes 1) waypoints assignment and 2) trajectory generation. In this paper, we propose a new method for this problem. First, we modify the concept of the standard visibility graph to greatly improve the optimality of the generated trajectories and reduce the computational complexity. Second, we propose an efficient stochastic approach using simulated annealing that assigns waypoints to each UAV from the constructed visibility graph. Third, we describe a method to detect collision between two UAVs. FinallY, we suggest an efficient method of controlling the velocity of UAVs using A* algorithm in order to avoid inter-UAV collision. We present simulation results from various environments that verify the effectiveness of our approach.

Satellite Attitude Control using Reaction Wheels and CMGs (반작용휠과 제어모멘트자이로를 이용한 위성자세제어)

  • Son, Jun-Won;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.935-945
    • /
    • 2011
  • We study X-axis or Y-axis high agile attitude control method, using four reaction wheels and two control moment gyros. Since normal satellites use same actuators, researchers design an attitude controller first, and then allocate torque commands to each actuator. However, our satellite uses both control moment gyros and reaction wheels, whose torque output differences are very large. Therefore, we cannot apply normal attitude controller design procedure. In this paper, we solve this problem by combining actuator torque command and attitude controller. Through numerical simulations, we show that our method enables satellite high agility.