• Title/Summary/Keyword: Satellite Attitude Control

Search Result 293, Processing Time 0.025 seconds

Attitude Stability of Satellite using Lyapunov equation (Lyapunov 방정식을 이용한 위성체 자세 안정화)

  • 천현경;문종우;이우승;박종국
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.720-723
    • /
    • 1999
  • For that the attitude control performance test of the satellite, dynamic analysis of satellite structure performed in reference with KOREASAT, and the equation of motion of rigid bodies was derivated. For attitude stability, Lyapunov's stability theorem and state space expression were applied to dynamic equation of satellite. To prove efficiency of our method, simulations are performed and result are shown.

  • PDF

Design of satellite attitude control system under periodic-type disturbances (주기적 형태의 외란이 가해지는 위성체에 대한 선형최적제어기 설계)

  • 김희섭;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1326-1329
    • /
    • 1997
  • In designing the controller by changing the weighting matrix for the pirpose of satisfying constraints, the physical meaning of weighting matrix may disapperar and the system may not yield best performance because operation condition such as periodic disturbance was not considered. In this paper, the weighting matrix is fixed and controller is designed to minimize the new performance index to reduce the effects of periodic-type disturbances. This method is applied to design the satellite controller to verify the effetiveness.

  • PDF

Development and Performance Test of a Spherical Reaction Wheel Actuator with Magnetic Levitation (자기부상을 적용한 구체 반작용휠 구동기 개발 및 성능 시험)

  • Kim, Dae-Kwan;Yoon, Hyung-Joo;Kim, Yong-Bok;Kang, Woo-Yong;Choi, Hong-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.731-737
    • /
    • 2012
  • In the present study, a feasibility study on an innovative satellite attitude control actuator is performed. The actuator is specially designed to generate the reaction torque in an arbitrary axis, so that a satellite attitude can be controlled by using itself. It consists of a spherical flywheel and electromagnets for levitation and rotation control of the ball. As the earlier study, a rotating performance test on the spherical actuator is conducted in a single rotating axis and vertical levitation condition. From the test results, it can be confirmed that the maximum speed and torque of the innovative device are 7,200rpm and 0.7Nm, respectively. Using a velocity-voltage characteristic curve of the spherical motor, an open-loop control (V/f constant control) is performed, and the test results show excellent control performance in acceleration and deceleration phases.

Design of the RLG Current Stabilizer for Attitude Control in the Satellite (저궤도 위성 자세제어용 RLG 전류 안정화 회로 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.98-101
    • /
    • 2008
  • In this paper, we describe the RLG current stabilizer circuit for attitude control in the satellite. The RLG makes use of the Sagnac effect within a resonant of a HeNe laser. The difference between two discharge currents causes one of the gyro bias errors. The theoretical background and current stabilizer are introduced. It is verified that the circuit designed is applicable to the test of input voltage and temperature.

Predictive Spacecraft Attitude Control under External Disturbances

  • Sam, Myung-Hyun;Suk, Oh-Choong;Choong, Bang-Hyo;Jea, Tahk-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.3-62
    • /
    • 2001
  • The predictive control is one of the nonlinear three-axis rotation methods. The desired trace of a satellite is pre-determined, and the control inputs are designed so that the satellite follows the ´predictive´ trace. The predictive control has been adapted to the research for the three-axis attitude control. In that case, the control variables are the quaternion represented the angular rates and attitude angles of the body about the three-axes. The objective of this paper is to propose to design a predictive controller for the three-axis attitude control under external disturbances. In order to do that, this paper proposes how to construct a predictive control law including disturbances and to discern them. The basic algorithm of the existent predictive control is partially modified, and the presumption and modeling of disturbances are performed ...

  • PDF

Pyramidal reaction wheel arrangement optimization of satellite attitude control subsystem for minimizing power consumption

  • Shirazi, Abolfazl;Mirshams, Mehran
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.190-198
    • /
    • 2014
  • The pyramidal reaction wheel arrangement is one of the configurations that can be used in attitude control simulators for evaluation of attitude control performance in satellites. In this arrangement, the wheels are oriented in a pyramidal configuration with a tilt angle. In this paper, a study of pyramidal reaction wheel arrangement is carried out in order to find the optimum tilt angle that minimizes total power consumption of the system. The attitude control system is analyzed and the pyramidal configuration is implemented in numerical simulation. Optimization is carried out by using an iterative process and the optimum tilt angle that provides minimum system power consumption is obtained. Simulation results show that the system requires the least power by using optimum tilt angle in reaction wheels arrangement.

Satellite Attitude Control using Reaction Wheels and CMGs (반작용휠과 제어모멘트자이로를 이용한 위성자세제어)

  • Son, Jun-Won;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.935-945
    • /
    • 2011
  • We study X-axis or Y-axis high agile attitude control method, using four reaction wheels and two control moment gyros. Since normal satellites use same actuators, researchers design an attitude controller first, and then allocate torque commands to each actuator. However, our satellite uses both control moment gyros and reaction wheels, whose torque output differences are very large. Therefore, we cannot apply normal attitude controller design procedure. In this paper, we solve this problem by combining actuator torque command and attitude controller. Through numerical simulations, we show that our method enables satellite high agility.

A Study on High Agile Satellite Maneuver using Reaction Wheels and CMGs (반작용휠과 제어모멘트자이로를 이용한 위성 고기동 연구)

  • Son, Jun-Won;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.107-119
    • /
    • 2013
  • We study three axis attitude control method including two axis high agile maneuver using four reaction wheels and two control moment gyros. We investigate singularity conditions due to two control moment gyros and propose singularity escape method. Based on this, we propose actuator control algorithm for high agile maneuver. Also, we propose actuator momentum management method which preserves momentum of reaction wheels and control moment gyroscopes before and after satellite attitude control. Through numerical simulation, we show that our method achieves three axis attitude control including two axis high agile maneuver and preserves actuators' momentum.

Numerical Investigation of On-orbit Thermal Characteristics for Cube Satellite with Passive Attitude Stabilization Method (수동형 자세제어 안정화 방식을 적용한 큐브위성의 열적 특성분석)

  • Oh, Hyun-Ung;Park, Tae-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.423-429
    • /
    • 2014
  • Passive attitude stabilization methods using the permanent magnet combined with hysteresis damper and the gravity gradient boom have been widely used for the attitude determination and control of cube satellite, due to its advantage of system simplicity. In this paper, on-orbit thermal characteristics of the cube satellite considering the attitude profiles obtained from the above passive attitude stabilization methods have been investigated through on-orbit thermal analysis. In addition, the effectiveness of the various thermal coatings on the panel for the communication antenna installation has been verified.

Large slewing control of low earth orbit satellite

  • Rhee, S.W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.44-48
    • /
    • 1994
  • A new method of quaternion feedback control for the attitude acquisition of spacecraft is suggested to limit the angular rates of rigid body which are not desirable and make a control algorithm complicate. New attitude acquisition control algorithm is evaluated and compared with the existing quaternion feedback control method for the large slewing maneuvers through simulations. The simulation results reveal that a new method is effective on limiting the angular rates of spacecraft.

  • PDF