• 제목/요약/키워드: Sarcoplasmic reticulum $Ca^{2+}$ release

검색결과 49건 처리시간 0.024초

Propranolol이 심근 sarcoplasmic reticulum 및 mitochondria 의 $Ca^{++}$ 조절작용에 미치는 효과에 관한 연구 (Effect of Propranolol on the $Ca^{++}$-regulation of Cardiac Sarcoplasmic Reticulum and Mitochondria)

  • 최수승
    • Journal of Chest Surgery
    • /
    • 제19권2호
    • /
    • pp.197-208
    • /
    • 1986
  • Propranolol is one of clinically useful antiarrhythmic agents and electrophysiologically classified as group II. And the negative inotropic effect which is not related to adrenolytic effect has been demonstrated with high concentration of propranolol. On the other hand, it has been well known that the calcium plays a central role in excitation-contraction coupling process of myocardium and also in electrophysiological changes of cell membrane. Author studies the effect of propranolol on calcium uptake and release in sarcoplasmic reticulum and mitochondria prepared from porcine myocardium to investigate the mechanism of action of propranolol on myocardium. The results are summarized as follow: 1] The maximum Ca++-uptake of sarcoplasmic reticulum is inhibited by propranolol in a dose dependent manner. 2] The release of calcium from sarcoplasmic reticulum is not affected by propranolol but with higher than 1x10-3 M of propranolol, rate of calcium release from sarcoplasmic reticulum is decreased. 3] Propranolol inhibits the maximum uptake and uptake rate of calcium in mitochondria non-competitively. [Ki = 6.21 x 10-4 M] 4] The rate of Na+ induced calcium release from mitochondrion shows a function of [Na+]2 and is inhibited by propranolol with the concentration significantly lower than that affect the calcium uptake in sarcoplasmic reticulum and in mitochondria [Ki = 2.91 x 10-5 M]. These results suggest that propranolol affects the intracellular calcium homeostasis which may considered to be one of the mechanism of action of propranolol on myocardium.

  • PDF

Membrane associated Ca2+ buffers in the heart

  • Lee, Duk-Gyu;Michalak, Marek
    • BMB Reports
    • /
    • 제43권3호
    • /
    • pp.151-157
    • /
    • 2010
  • $Ca^{2+}$ is a universal signalling molecule that affects a variety of cellular processes including cardiac development. The majority of intracellular $Ca^{2+}$ is stored in the endoplasmic and sarcoplasmic reticulum of muscle and non-muscle cells. Calreticulin is a well studied $Ca^{2+}$-buffering protein in the endoplasmic reticulum, and calreticulin deficiency is embryonic lethal due to impaired cardiac development. Despite calsequestrin being the most abundant $Ca^{2+}$-buffering protein in the sarcoplasmic reticulum, viability is maintained in embryos without calsequestrin and normal $Ca^{2+}$ release and contractile function is observed. The $Ca^{2+}$ homeostasis regulated by the endoplasmic and sarcoplasmic reticulum is critical for the development and proper function of the heart.

골격근 수축에 있어서 근장그물로부터의 Ca$^{2+}$ 유리 기전에 대한 고찰 (Review of Sarcoplasmic Reticulum Ca$^{2+}$ Releasing Mechanisms in Skeletal Muscle Contraction)

  • 구현모;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제13권1호
    • /
    • pp.237-243
    • /
    • 2001
  • Skeletal muscle cells are activated by ${\alpha}$-motorneurons which release acetylcholine at the neuromuscular junction. This results in a local depolarization of surface membrane which triggers an action potential. The action potential propagates along the surface membrane and also into the T-tubule system. In the triads T-tubules are in close connection with the terminal cisternae of the sarcoplasmic reticulum(SR). The action potential activaies T-tubule voltage sensors(DHP receptors). which activates SR Ca$^{2+}$ release channels(ryanodinc receptors). Ca$^{2+}$ have a key role in skeletal muscle in that an increase of free myoplasmic Ca$^{2+}$ concentration. The process of coupling chemical and electrical signals at the cell surface to the intracellular release of Ca$^{2+}$and ultimate contraction of muscle fibers is termed excitation-contraction coupling(ECC). Coupling of cel1 surface signals to intracellular Ca$^{2+}$ release proceeds by several mechanisms in skeletal muscle cells. This review focus on sarcopiasmic reticulum(SR) Ca$^{2+}$ releasing mechanisms from sarcoplasmic reticulum in the skeletal muscle. The mechanisms include DCCR, CICR, and HCR.

  • PDF

Reconstitution of Sarcoplasmic Reticulum-$Ca^{2+}$ Release Channels into Phospholipid Vesicles : Investigation of Conditions for Functional Reconstitution

  • Yang, In-Sik;Lee, Hee-Bong
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.129-137
    • /
    • 1995
  • The ryanodine-receptor $Ca^{2+}$ release channel protein in the sarcoplasmic reticulum membrane of rabbit skeletal muscle plays an important role in muscle exitation-contraction (E-C) coupling. Various types of detergents were tested, including Chaps, cholate, octylglucoside, Zwittergents, Mega-9, Lubrol PX, and Triton X-100 for solubilization of this protein. Among these, Chaps and Triton X-100 were found to optionally solubilize the channel complex. Optimum conditions for this solubilization were pH 7.4 with a salt concentration of 1 M. The addition of phospholipid in the solubilization step helped in stabilizing the protein. The purification of the receptor was performed using sucrose density gradient centrifugation. Various methods [dilution, freeze-thaw, adsorption (Biobeads), and dialysis] were investigated to incorporate the Chaps-solubilized and purified $Ca^{2+}$ release channel protein into liposomes made from different types of phospholipids. Of these, a combined method consisting of a dialysis, freeze-thaw and sonication steps yielded the best results. Reconstituted vesicles produced by this method with 95% phosphatidylcholine (from soybean extract) had good function.

  • PDF

골격근 망상체 $Ca^{2+}$유리 Channel[Raynodine receptor]의 $Mg^{2+}$에 의한 유리 억제 (Inhibitory Effect of $Mg^{2+}$ on the Release of $Ca^{2+}$ from Ryanodine Receptor of the Sarcoplasmic Reticulum in the Skeletal Muscle)

  • 이철주
    • Journal of Chest Surgery
    • /
    • 제25권4호
    • /
    • pp.347-355
    • /
    • 1992
  • The precise mechanism of the Excitation-Contraction Coupling is still uncertain. But the concept that Ca2+ induced Ca2+ release [CICR] from the Ryanodine receptor in the sarcoplasmic reticulum [foot structure] may play a major role in E-C coupling has been widely accepted since 1970`s. It is believed that increased cytosolic Ca2+ followed by CICR is main contributor for E-C coupling of striated muscle. Resulting phenomena of ischemic /post-reperfusion myocyte is increased cytosolic Ca2+, even to the absence of Ca2+ in reperfusate. So intracellular inhibitor to CICR might prevent the ischemic and reperfusion damage of myocardial cells. The relatively purified foot protein, especially heavy sarcoplasmic reticulum rich, of the skeletal muscle was incorporated into the black lipid bilayer [Phosphatidyl ethanolamine: Phosphatidyl serine=l: 1]. Under the steady state of membrane potential [+20 mV], ionic current through Ryanodine receptor was measured with Cs+ as charge carrier. In the cis chamber [Cytoplasmic side], Mg2+ strongly inhibited CICR of Ryanodine receptor[Kd=6.2 nM]. In conclusion, naturally existing intracellular free Mg2+ can inhibit CICR from intracellular Ca2+ reservior [heavy SR]. So post-ischemic or post-reperfusing myocardium could be preserved using additional free Mg2+ in cardioplegic solution or reperfusate, otherwise the optimal concentration is undetermined.

  • PDF

Caffeine Indirectly Activates Ca2+-ATPases in the Vesicles of Cardiac Junctional Sarcoplasmic Reticulum

  • Kim, Young-Kee;Cho, Hyoung-Jin;Kim, Hae-Won
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.22-26
    • /
    • 1996
  • Agents that activate or inhibit the $Ca^{2+}$ release channel in cardiac sarcoplasmic reticulum (SR) were tested for their abilities to affect the activity of the SR $Ca^{2+}$-ATPase. Vesicles of junctional SR (heavy SR, HSR) from terminal cisternae were prepared from porcine cardiac muscle by density gradient centrifugation. The steady-state activity of $Ca^{2+}$-ATPases in intact HSR vesicles was/$347{\pm}5\;nmol/min{\cdot}mg$ protein (${\pm}$ SD). When the HSR vesicles were made leaky, the activity was increased to $415{\pm}5\;nmol/min{\cdot}mg$ protein. This increase is probably due to the uncoupling of HSR vesicles. Caffeine (10 mM), an agonist of the SR $Ca^{2+}$ release channel, increased $Ca^{2+}$-ATPase activity in the intact HSR vesicle preparation to $394{\pm}30\;nmol/min{\cdot}mg$ protein. However, caffeine had no significant effect in the leaky vesicle preparation and in the purified $Ca^{2+}$-ATPase preparation. The effect of caffeine on SR $Ca^{2+}$-ATPase was investigated at various concentrations of $Ca^{2+}$. Caffeine increased the pump activity over the whole range of $Ca^{2+}$ concentrations, from $1\;{\mu}M$ to $250\;{\mu}M$, in the intact HSR vesicles. When the SR $Ca^{2+}$-ATPase was inhibited by thapsigargin, no caffeine effect was observed. These results imply that the caffeine effect requires the intact vesicles and that the increase in $Ca^{2+}$-ATPase activity is not due to a direct interaction of caffeine with the enzyme. We propose that the activity of SR $Ca^{2+}$-ATPase is linked indirectly to the activity of the $Ca^{2+}$ release channel (ryanodine receptor) and may depend upon the amount of $Ca^{2+}$ released by the channels.

  • PDF

Higenamine이 심근 Sarcoplasmic Reticulum의 칼슘운반에 미치는 영향에 관한 연구 (The Effect of Higenamine on the Calcium Transport of Cardiac Sarcoplasmic Reticulum)

  • 김주현;이영균;김혜원;김명석;박찬웅;임정규
    • 대한약리학회지
    • /
    • 제18권2호
    • /
    • pp.79-87
    • /
    • 1982
  • Higenamine(dl-demethylcoclaurine, dl-1-(4-hydroxybenzyl)-6,7-dihydroxy-1,2,3,4-tetrah-ydroisoquinoline hydrochloride), which has recently been isolated from Aconite root by Drs. Kosuge and Yokota, has known to be the main cardiotonic component of the Aconite root. The present study was undertaken to investigate the effects of Higenamine on the calcium binding and release and ATPase activity of fragmented cardiac sarcoplasmic reticulum under in vitro condition. The calcium binding and release of sarcoplasmic reticulum were measured by using the double-beam spectrophotometer and the calcium sensitive dye, murexide. In the presence of $10^{-4}{\sim}5{\times}10^{-3}M$ of Higenamine, the maximal calcium binding and the initial binding rate of porcine cardiac sarcoplasmic reticulum were inhibited dose dependently by up to 43%. However, the calcium release from cardiac sarcoplasmic reticulum, which was loaded with $Ca^{++}(50{\mu}M)$, was stimulated in dose dependent manner. When incubated in the medium of 20 mM Tris-maleate(pH 7.0), 100 mM KCl, 10 mM $MgCl_2,\;0.05mM\;CaCl_2\;and\;0.014{\sim}1\;mM\;Tris-ATP\;at\;30^{\circ}C$ in the presence of Higenamine $(10^{-4}{\sim}5{\times}10^{-3}M)$, both $Ca^{++}-and\;Mg^{++}-ATPase$ of sarcoplasmic reticulum were inhibited non-competitively by Higenamine and values of $K_i$ were 4.896 mM and 6.875 mM respectively. It is suggested from the above findings that the cardiotonic effects of Higenamine might be partially explained by the inhibition of calcium binding and the stimulation of calcium release from the sarcoplasimic reticulum which may increase the free intracellular calcium that is available in the contraction of the cardiac muscle fiber.

  • PDF

[$Ca^{2+}-induced$ $Ca^{2+}$ Release from Sarcoplasmic Reticulum Negatively Regulates Myocytic ANP Release in Beating Rabbit Atria

  • Li, Dan;Quan, He Xiu;Wen, Jin-Fu;Jin, Jing-Yu;Park, Sung-Hun;Kim, Sun-Young;Kim, Sung-Zoo;Cho, Kyung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권2호
    • /
    • pp.87-94
    • /
    • 2005
  • It is not clear whether $Ca^{2+}-induced$ $Ca^{2+}$ release from the sarcoplasmic reticulum (SR) is involved in the regulation of atrial natriuretic peptide (ANP) release. Previously, we have shown that nifedipine increased ANP release, indicating that $Ca^{2+}$ entry via voltage-gated L-type $Ca^{2+}$ channel activation decreases ANP release. The purpose of the present study was two-fold: to define the role of SR $Ca^{2+}$ release in the regulation of ANP release and whether $Ca^{2+}$ entry via L-type $Ca^{2+}$ channel is prerequisite for the SR-related effect on ANP release. Experiments were performed in perfused beating rabbit atria. Ryanodine, an inhibitor of SR $Ca^{2+}$ release, increased atrial myocytic ANP release ($8.69{\pm}3.05$, $19.55{\pm}1.09$, $27.31{\pm}3.51$, and $18.91{\pm}4.76$% for 1, 2, 3, and $6{\mu}M$ ryanodine, respectively; all P<0.01) with concomitant decrease in atrial stroke volume and pulse pressure in a dose-dependent manner. In the presence of thapsigargin, an inhibitor of SR $Ca^{2+}$ pump, ryanodine-induced increase in ANP release was not observed. Thapsigargin attenuated ryanodine-induced decrease in atrial dynamic changes. Blockade of L-type $Ca^{2+}$ channel with nifedipine abolished ryanodine-induced increase in ANP release ($0.69{\pm}5.58$% vs. $27.31{\pm}3.51$%; P<0.001). In the presence of thapsigargin and ryanodine, nifedipine increased ANP release and decreased atrial dynamics. These data suggest that $Ca^{2+}$-induced $Ca^{2+}$ release from the SR is inversely involved in the regulation of atrial myocytic ANP release.

筋小胞體의 ATPase 活性과 칼슘吸收能에 미치는 Caffeine의 영향 (The Effects of Caffeine on the ATPase Activity and the Calcium Uptake of the Fragmented Sarcoplasmic Reticulum of Rabbit Skeletal Muscle)

  • Ha, Doo-Bong
    • 한국동물학회지
    • /
    • 제15권4호
    • /
    • pp.163-182
    • /
    • 1972
  • 토끼의 골격근 小胞體의 ATPase 活性과 Ca吸收能에 미치는 caffeine의 영향을 조사 하였다. 遠心分離로 分劃된 小胞體에서 $2,000 \\sim 8,000 \\times G$ 分劃의 ATPase 活性은 caffeine에 의하여 增大되지만 $8,000 \\times G$ 以上의 分劃에서는 아무 영향도 받지 않았다. Caffeine에 의한 이 活性增大는 이 分劃에 混在하는 mitochondria의 ATPase 活性이 增大 된 結果라고 해석된다. 小胞體의 $2,000 \\sim 10,000 \\times G$ 分劃과 $10,000 \\sim 20,000 \\times G$ 分劃의 Ca吸收能도은 反應液內 Ca의 농도가 200 nmoles/mg protein 정도 이상일 때는 caffeine에 의하여 현저히 阻害되지만, Ca의 농도가 이 以上이 때는 2,000$\\sim$10,000 分劃에서만 이 阻害現象을 볼 수 있다. 低農度 Ca에서의 이 阻害現象은 caffeine에 의하여 mitochondira의 Ca吸收도 阻害되기 때문에 나타나는 것으로 해석된다. Caffiene에 의한 筋收縮의 誘發 및 逕縮現象은 筋小胞體의 Ca 吸收가 이 特質에 의하여 阻害되고 또 蓄積된 Ca이 放出되기 때문에 일어나는 것으로 해석된다.

  • PDF

Decrease in $Ca^{2+}$ Storage in the Cardiac Sarcoplasmic Reticulum of Diabetic Rat

  • Kim, Won-Tae;Kim, Hae-Won;Kim, Young-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.725-732
    • /
    • 1998
  • In order to elucidate the molecular mechanism of the intracellular $Ca^{2+}$ overload frequently reported from diabetic heart, diabetic rats were induced by the administration of streptozotocin, the membrane vesicles of junctional SR (heavy SR, HSR) were isolated from the ventricular myocytes, and SR $Ca^{2+}$ uptake and SR $Ca^{2+}$ release were measured. The activity of SR $Ca^{2+}-ATPase$ was $562{\pm}14$ nmol/min/mg protein in control heart. The activity was decreased to $413{\pm}30$ nmol/min/mg protein in diabetic heart and it was partially recovered to $485{\pm}18$ nmol/min/mg protein in insulin-treated diabetic heart. A similar pattern was observed in SR $^{45}Ca^{2+}$ uptakes; the specific uptake was the highest in control heart and it was the lowest in diabetic heart. In SR $^{45}Ca^{2+}$ release experiment, the highest release, 45% of SR $^{45}Ca^{2+}$, was observed in control heart. The release of diabetic heart was 20% and it was 30% in insulin-treated diabetic heart. Our results showed that the activities of both SR $Ca^{2+}-ATPase$ and SR $Ca^{2+}$ release channel were decreased in diabetic heart. In order to evaluate how these two factors contribute to SR $Ca^{2+}$ storage, the activity of SR $Ca^{2+}-ATPase$ was measured in the uncoupled leaky vesicles. The uncoupling effect which is able to increase the activity of SR $Ca^{2+}-ATPase$ was observed in control heart; however, no significant increments of SR $Ca^{2+}-ATPase$ activities were measured in both diabetic and insulin-treated diabetic rats. These results represent that the $Ca^{2+}$ storage in SR is significantly depressed and, therefore, $Ca^{2+}-sequestering$ activity of SR may be also depressed in diabetic heart.

  • PDF