References
- Baumann, O. and Walz, B. (2001) Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int. Rev. Cytol. 205, 149-214 https://doi.org/10.1016/S0074-7696(01)05004-5
- Berridge, M. J., Lipp, P. and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11-21 https://doi.org/10.1038/35036035
- Corbett, E. F. and Michalak, M. (2000) Calcium, a signaling molecule in the endoplasmic reticulum? Trends. Biochem. Sci. 25, 307-311 https://doi.org/10.1016/S0968-0004(00)01588-7
- Nicchitta, C. V. (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr. Opin. Immunol. 10, 103-109 https://doi.org/10.1016/S0952-7915(98)80039-3
-
Corbett, E. F., Oikawa, K., Francois, P., Tessier, D. C., Kay, C., Bergeron, J. J., Thomas, D. Y., Krause, K. H. and Michalak, M. (1999)
$Ca^{2+}$ regulation of interactions between endoplasmic reticulum chaperones. J. Biol. Chem. 274, 6203-6211 https://doi.org/10.1074/jbc.274.10.6203 - Molinari, M. and Helenius, A. (2000) Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288, 331-333 https://doi.org/10.1126/science.288.5464.331
- Rossi, D., Barone, V., Giacomello, E., Cusimano, V. and Sorrentino, V. (2008) The sarcoplasmic reticulum: an organized patchwork of specialized domains. Traffic 9, 1044-1049 https://doi.org/10.1111/j.1600-0854.2008.00717.x
- Rossi, A. E. and Dirksen, R. T. (2006) Sarcoplasmic reticulum: the dynamic calcium governor of muscle. Muscle Nerve 33, 715-731 https://doi.org/10.1002/mus.20512
- Vitadello, M., Colpo, P. and Gorza, L. (1998) Rabbit cardiac and skeletal myocytes differ in constitutive and inducible expression of the glucose-regulated protein GRP94. Biochem. J. 332, 351-359 https://doi.org/10.1042/bj3320351
- Fliegel, L., Newton, E., Burns, K. and Michalak, M. (1990) Molecular cloning of cDNA encoding a 55-kDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 15496-15502
- Volpe, P., Villa, A., Podini, P., Martini, A., Nori, A., Panzeri, M. C. and Meldolesi, J. (1992) The endoplasmic reticulum-sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers. Proc. Natl. Acad. Sci. U.S.A. 89, 6142-6146 https://doi.org/10.1073/pnas.89.13.6142
- Bootman, M. D., Collins, T. J., Peppiatt, C. M., Prothero, L. S., MacKenzie, L., De Smet, P., Travers, M., Tovey, S. C., Seo, J. T., Berridge, M. J., Ciccolini, F. and Lipp, P. (2001) Calcium signalling--an overview. Semin. Cell. Dev. Biol. 12, 3-10 https://doi.org/10.1006/scdb.2000.0211
- Berridge, M. J., Bootman, M. D. and Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 4, 517-529 https://doi.org/10.1038/nrm1155
- Webb, S. E. and Miller, A. L. (2003) Calcium signalling during embryonic development. Nat. Rev. Mol. Cell. Biol. 4, 539-551 https://doi.org/10.1038/nrm1149
- Baksh, S., Burns, K., Andrin, C. and Michalak, M. (1995) Interaction of calreticulin with protein disulfide isomerase. J. Biol. Chem. 270, 31338-31344 https://doi.org/10.1074/jbc.270.52.31338
- Putney, J. W., Jr. and McKay, R. R. (1999) Capacitative calcium entry channels. Bioessays. 21, 38-46 https://doi.org/10.1002/(SICI)1521-1878(199901)21:1<38::AID-BIES5>3.0.CO;2-S
- Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes. Dev. 13, 1211-1233 https://doi.org/10.1101/gad.13.10.1211
-
Meldolesi, J. and Pozzan, T. (1998) The endoplasmic reticulum
$Ca^{2+}$ store: a view from the lumen. Trends. Biochem. Sci. 23, 10-14 https://doi.org/10.1016/S0968-0004(97)01143-2 - Ashby, M. C. and Tepikin, A. V. (2001) ER calcium and the functions of intracellular organelles. Semin. Cell. Dev. Biol. 12, 11-17 https://doi.org/10.1006/scdb.2000.0212
- Greber, U. F. and Gerace, L. (1995) Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J. Cell. Bio.l 128, 5-14 https://doi.org/10.1083/jcb.128.1.5
- Stevens, F. J. and Argon, Y. (1999) Protein folding in the ER. Semin. Cell. Dev. Biol. 10, 443-454 https://doi.org/10.1006/scdb.1999.0315
-
Liou, J., Kim, M. L., Heo, W. D., Jones, J. T., Myers, J. W., Ferrell, J. E., Jr. and Meyer, T. (2005) STIM is a
$Ca^{2+}$ sensor essential for$Ca^{2+}$ -store-depletion-triggered$Ca^{2+}$ influx. Curr. Biol. 15, 1235-1241 https://doi.org/10.1016/j.cub.2005.05.055 -
Bastianutto, C., Clementi, E., Codazzi, F., Podini, P., De Giorgi, F., Rizzuto, R., Meldolesi, J. and Pozzan, T. (1995) Overexpression of calreticulin increases the
$Ca^{2+}$ capacity of rapidly exchanging$Ca^{2+}$ stores and reveals aspects of their lumenal microenvironment and function. J. Cell. Biol. 130, 847-855 https://doi.org/10.1083/jcb.130.4.847 -
Mery, L., Mesaeli, N., Michalak, M., Opas, M., Lew, D. P. and Krause, K. H. (1996) Overexpression of calreticulin increases intracellular
$Ca^{2+}$ storage and decreases storeoperated$Ca^{2+}$ influx. J. Biol. Chem. 271, 9332-9339 https://doi.org/10.1074/jbc.271.16.9332 - Arnaudeau, S., Frieden, M., Nakamura, K., Castelbou, C., Michalak, M. and Demaurex, N. (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J. Biol. Chem. 277, 46696-46705 https://doi.org/10.1074/jbc.M202395200
-
Baksh, S. and Michalak, M. (1991) Expression of calreticulin in Escherichia coli and identification of its
$Ca^{2+}$ binding domains. J. Biol. Chem. 266, 21458-21465 - Mesaeli, N., Nakamura, K., Zvaritch, E., Dickie, P., Dziak, E., Krause, K. H., Opas, M., MacLennan, D. H. and Michalak, M. (1999) Calreticulin is essential for cardiac development. J. Cell. Biol. 144, 857-868 https://doi.org/10.1083/jcb.144.5.857
- Guo, L., Lynch, J., Nakamura, K., Fliegel, L., Kasahara, H., Izumo, S., Komuro, I., Agellon, L. B. and Michalak, M. (2001) COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development. J. Biol. Chem. 276, 2797-2801 https://doi.org/10.1074/jbc.C000822200
- Koch, G., Smith, M., Macer, D., Webster, P. and Mortara, R. (1986) Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell. Sci. 86, 217-232
- Haas, I. G. and Wabl, M. (1983) Immunoglobulin heavy chain binding protein. Nature 306, 387-389 https://doi.org/10.1038/306387a0
-
Lievremont, J. P., Rizzuto, R., Hendershot, L. and Meldolesi, J. (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of
$Ca^{2+}$ ,J. Biol. Chem. 272, 30873-30879 https://doi.org/10.1074/jbc.272.49.30873 - Lebeche, D., Lucero, H. A. and Kaminer, B. (1994) Calcium binding properties of rabbit liver protein disulfide isomerase. Biochem. Biophys. Res. Commun. 202, 556-561 https://doi.org/10.1006/bbrc.1994.1964
- Hirano, N., Shibasaki, F., Sakai, R., Tanaka, T., Nishida, J., Yazaki, Y., Takenawa, T. and Hirai, H. (1995) Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. Eur. J. Biochem. 234, 336-342 https://doi.org/10.1111/j.1432-1033.1995.336_c.x
- Wada, I., Rindress, D., Cameron, P. H., Ou, W. J., Doherty, J. J., 2nd, Louvard, D., Bell, A. W., Dignard, D., Thomas, D. Y. and Bergeron, J. J. (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol. Chem. 266, 19599-19610
- Milner, R. E., Baksh, S., Shemanko, C., Carpenter, M. R., Smillie, L., Vance, J. E., Opas, M. and Michalak, M. (1991) Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J. Biol. Chem. 266, 7155-7165
- MacLennan, D. H. and Reithmeier, R. A. (1998) Ion tamers. Nat. Struct. Biol. 5, 409-411 https://doi.org/10.1038/nsb0698-409
-
MacLennan, D. H. (2000)
$Ca^{2+}$ signalling and muscle disease. Eur. J. Biochem. 267, 5291-5297 https://doi.org/10.1046/j.1432-1327.2000.01566.x - Fan, G. C., Yuan, Q. and Kranias, E. G. (2008) Regulatory roles of junctin in sarcoplasmic reticulum calcium cycling and myocardial function. Trends. Cardiovasc. Med. 18, 1-5 https://doi.org/10.1016/j.tcm.2007.10.002
- Kapoor, M., Ellgaard, L., Gopalakrishnapai, J., Schirra, C., Gemma, E., Oscarson, S., Helenius, A. and Surolia, A. (2004) Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Biochemistry 43, 97-106 https://doi.org/10.1021/bi0355286
-
Baksh, S., Spamer, C., Heilmann, C. and Michalak, M. (1995) Identification of the
$Zn^{2+}$ binding region in calreticulin. FEBS Lett. 376, 53-57 https://doi.org/10.1016/0014-5793(95)01246-4 - Andrin, C., Corbett, E. F., Johnson, S., Dabrowska, M., Campbell, I. D., Eggleton, P., Opas, M. and Michalak, M. (2000) Expression and purification of mammalian calreticulin in Pichia pastoris. Protein. Expr. Purif. 20, 207-215 https://doi.org/10.1006/prep.2000.1291
- Oliver, J. D., Roderick, H. L., Llewellyn, D. H. and High, S. (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell. 10, 2573-2582 https://doi.org/10.1091/mbc.10.8.2573
- Ellgaard, L., Bettendorff, P., Braun, D., Herrmann, T., Fiorito, F., Jelesarov, I., Guntert, P., Helenius, A. and Wuthrich, K. (2002) NMR structures of 36 and 73-residue fragments of the calreticulin P-domain. J. Mol. Biol. 322, 773-784 https://doi.org/10.1016/S0022-2836(02)00812-4
- Frickel, E. M., Riek, R., Jelesarov, I., Helenius, A., Wuthrich, K. and Ellgaard, L. (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. U.S.A. 99, 1954-1959 https://doi.org/10.1073/pnas.042699099
- Martin, V., Groenendyk, J., Steiner, S. S., Guo, L., Dabrowska, M., Parker, J. M., Muller-Esterl, W., Opas, M. and Michalak, M. (2006) Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin. J. Biol. Chem. 281, 2338-2346 https://doi.org/10.1074/jbc.M508302200
- Nakamura, K., Zuppini, A., Arnaudeau, S., Lynch, J., Ahsan, I., Krause, R., Papp, S., De Smedt, H., Parys, J. B., Muller-Esterl, W., Lew, D. P., Krause, K. H., Demaurex, N., Opas, M. and Michalak, M. (2001) Functional specialization of calreticulin domains. J. Cell. Biol. 154, 961-972 https://doi.org/10.1083/jcb.200102073
- Fasolato, C., Pizzo, P. and Pozzan, T. (1998) Delayed activation of the store-operated calcium current induced by calreticulin overexpression in RBL-1 cells. Mol. Biol. Cell. 9, 1513-1522 https://doi.org/10.1091/mbc.9.6.1513
-
Camacho, P. and Lechleiter, J. D. (1995) Calreticulin inhibits repetitive intracellular
$Ca^{2+}$ waves. Cell 82, 765-771 https://doi.org/10.1016/0092-8674(95)90473-5 - John, L. M., Lechleiter, J. D. and Camacho, P. (1998) Differential modulation of SERCA2 isoforms by calreticulin. J. Cell. Biol. 142, 963-973 https://doi.org/10.1083/jcb.142.4.963
- Coppolino, M. G., Woodside, M. J., Demaurex, N., Grinstein, S., St-Arnaud, R. and Dedhar, S. (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386, 843-847 https://doi.org/10.1038/386843a0
- Hebert, D. N. and Molinari, M. (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377-1408 https://doi.org/10.1152/physrev.00050.2006
- Molinari, M., Eriksson, K. K., Calanca, V., Galli, C., Cresswell, P., Michalak, M. and Helenius, A. (2004) Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell 13, 125-135 https://doi.org/10.1016/S1097-2765(03)00494-5
- Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I. and Opas, M. (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417, 651-666 https://doi.org/10.1042/BJ20081847
- Treves, S., Vilsen, B., Chiozzi, P., Andersen, J. P. and Zorzato, F. (1992) Molecular cloning, functional expression and tissue distribution of the cDNA encoding frog skeletal muscle calsequestrin. Biochem. J. 283, 767-772 https://doi.org/10.1042/bj2830767
- Slupsky, J. R., Ohnishi, M., Carpenter, M. R. and Reithmeier, R. A. (1987) Characterization of cardiac calsequestrin. Biochemistry 26, 6539-6544 https://doi.org/10.1021/bi00394a038
- Yang, A., Sonin, D., Jones, L., Barry, W. H. and Liang, B. T. (2004) A beneficial role of cardiac P2X4 receptors in heart failure: rescue of the calsequestrin overexpression model of cardiomyopathy. Am. J. Physiol. Heart. Circ. Physiol. 287, H1096-1103 https://doi.org/10.1152/ajpheart.00079.2004
- Scott, B. T., Simmerman, H. K., Collins, J. H., Nadal- Ginard, B. and Jones, L. R. (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J. Biol. Chem. 263, 8958-8964
- Szegedi, C., Sarkozi, S., Herzog, A., Jona, I. and Varsanyi, M. (1999) Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Biochem. J. 337, 19-22 https://doi.org/10.1042/0264-6021:3370019
- Gyorke, I., Hester, N., Jones, L. R. and Gyorke, S. (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 86, 2121-2128 https://doi.org/10.1016/S0006-3495(04)74271-X
- Wanderling, S., Simen, B. B., Ostrovsky, O., Ahmed, N. T., Vogen, S. M., Gidalevitz, T. and Argon, Y. (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol. Biol. Cell. 18, 3764-3775 https://doi.org/10.1091/mbc.E07-03-0275
- Lozyk, M. D., Papp, S., Zhang, X., Nakamura, K., Michalak, M. and Opas, M. (2006) Ultrastructural analysis of development of myocardium in calreticulin deficient mice. BMC. Dev. Biol. 6, 54 https://doi.org/10.1186/1471-213X-6-54
- Goncharova, E. J., Kam, Z., and Geiger, B. (1992) The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. Development 114, 173-183
- Linask, K. K., Ludwig, C., Han, M. D., Liu, X., Radice, G. L. and Knudsen, K. A. (1998) N-cadherin/catenin-mediated morphoregulation of somite formation. Dev. Biol. 202, 85-102 https://doi.org/10.1006/dbio.1998.9025
- Fadel, M. P., Szewczenko-Pawlikowski, M., Leclerc, P., Dziak, E., Symonds, J. M., Blaschuk, O., Michalak, M. and Opas, M. (2001) Calreticulin affects beta-catenin- associated pathways. J. Biol. Chem. 276, 27083-27089 https://doi.org/10.1074/jbc.M101676200
- Fadel, M. P., Dziak, E., Lo, C. M., Ferrier, J., Mesaeli, N., Michalak, M. and Opas, M. (1999) Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J. Biol. Chem. 274, 15085-15094 https://doi.org/10.1074/jbc.274.21.15085
- Nakamura, K., Robertson, M., Liu, G., Dickie, P., Guo, J. Q., Duff, H. J., Opas, M., Kavanagh, K. and Michalak, M. (2001) Complete heart block and sudden death in mice overexpressing calreticulin. J. Clin. Invest. 107, 1245-1253 https://doi.org/10.1172/JCI12412
-
Knollmann, B. C., Chopra, N., Hlaing, T., Akin, B., Yang, T., Ettensohn, K., Knollmann, B. E., Horton, K. D., Weissman, N. J., Holinstat, I., Zhang, W., Roden, D. M., Jones, L. R., Franzini-Armstrong, C. and Pfeifer, K. (2006) Casq2 deletion causes sarcoplasmic reticulum volume increase, premature
$Ca^{2+}$ release, and catecholaminergic polymorphic ventricular tachycardia. J. Clin. Invest. 116, 2510-2520 - Postma, A. V., Denjoy, I., Hoorntje, T. M., Lupoglazoff, J. M., Da Costa, A., Sebillon, P., Mannens, M. M., Wilde, A. A. and Guicheney, P. (2002) Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 91, e21-26 https://doi.org/10.1161/01.RES.0000038886.18992.6B
- Sato, Y., Ferguson, D. G., Sako, H., Dorn, G. W., 2nd, Kadambi, V. J., Yatani, A., Hoit, B. D., Walsh, R. A. and Kranias, E. G. (1998) Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J. Biol. Chem. 273, 28470-28477 https://doi.org/10.1074/jbc.273.43.28470
-
Jones, L. R., Suzuki, Y. J., Wang, W., Kobayashi, Y. M., Ramesh, V., Franzini-Armstrong, C., Cleemann, L., and Morad, M. (1998) Regulation of
$Ca^{2+}$ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest. 101, 1385-1393 https://doi.org/10.1172/JCI1362 - Miller, S. L., Currie, S., Loughrey, C. M., Kettlewell, S., Seidler, T., Reynolds, D. F., Hasenfuss, G. and Smith, G. L. (2005) Effects of calsequestrin over-expression on excitation-contraction coupling in isolated rabbit cardiomyocytes. Cardiovasc Res. 67, 667-677 https://doi.org/10.1016/j.cardiores.2005.04.023
- Tsutsui, H., Ishibashi, Y., Imanaka-Yoshida, K., Yamamoto, S., Yoshida, T., Sugimachi, M., Urabe, Y. and Takeshita, A. (1997) Alterations in sarcoplasmic reticulum calcium-storing proteins in pressure-overload cardiac hypertrophy. Am. J. Physiol. 272, H168-175
- Allen, B. G. and Katz, S. (2000) Calreticulin and calsequestrin are differentially distributed in canine heart. J. Mol. Cell. Cardiol. 32, 2379-2384 https://doi.org/10.1006/jmcc.2000.1268
- Kaakinen, M., Papponen, H. and Metsikko, K. (2008) Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers. Exp. Cell. Res. 314, 237-245 https://doi.org/10.1016/j.yexcr.2007.10.009
- Kaisto, T. and Metsikko, K. (2003) Distribution of the endoplasmic reticulum and its relationship with the sarcoplasmic reticulum in skeletal myofibers. Exp. Cell. Res. 289, 47-57 https://doi.org/10.1016/S0014-4827(03)00231-3
Cited by
- Calcium-dependent protein folding in amyotrophic lateral sclerosis vol.54, pp.2, 2013, https://doi.org/10.1016/j.ceca.2013.05.007
- Calcium signalling in developing cardiomyocytes: implications for model systems and disease vol.593, pp.5, 2015, https://doi.org/10.1113/jphysiol.2014.274712
- The cardiac calsequestrin gene transcription is modulated at the promoter by NFAT and MEF-2 transcription factors vol.12, pp.9, 2017, https://doi.org/10.1371/journal.pone.0184724
- Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? vol.69, pp.7, 2012, https://doi.org/10.1007/s00018-011-0845-9
- The endoplasmic reticulum in cardiovascular health and disease vol.90, pp.9, 2012, https://doi.org/10.1139/y2012-058
- Plasma Membrane Calcium Pump (PMCA4)-Neuronal Nitric-oxide Synthase Complex Regulates Cardiac Contractility through Modulation of a Compartmentalized Cyclic Nucleotide Microdomain vol.286, pp.48, 2011, https://doi.org/10.1074/jbc.M111.290411
- Proteomic Identification of a Novel Hsp90-Containing Protein–Mineral Complex Which Can Be Induced in Cells in Response to Massive Calcium Influx vol.11, pp.6, 2012, https://doi.org/10.1021/pr201201y
- Roles for the Sarco-/Endoplasmic Reticulum in Cardiac Myocyte Contraction, Protein Synthesis, and Protein Quality Control vol.27, pp.6, 2012, https://doi.org/10.1152/physiol.00034.2012