• Title/Summary/Keyword: Sarcoplasmic/endoplasmic reticulum $Ca^{2+}$-ATPase 1a (SERCA1a)

Search Result 2, Processing Time 0.015 seconds

SERCA2a: a prime target for modulation of cardiac contractility during heart failure

  • Park, Woo Jin;Oh, Jae Gyun
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.237-243
    • /
    • 2013
  • Heart failure is one of the leading causes of sudden death in developed countries. While current therapies are mostly aimed at mitigating associated symptoms, novel therapies targeting the subcellular mechanisms underlying heart failure are emerging. Failing hearts are characterized by reduced contractile properties caused by impaired $Ca^{2+}$ cycling between the sarcoplasm and sarcoplasmic reticulum (SR). Sarcoplasmic/endoplasmic reticulum $Ca^{2+}$ ATPase 2a (SERCA2a) mediates $Ca^{2+}$ reuptake into the SR in cardiomyocytes. Of note, the expression level and/or activity of SERCA2a, translating to the quantity of SR $Ca^{2+}$ uptake, are significantly reduced in failing hearts. Normalization of the SERCA2a expression level by gene delivery has been shown to restore hampered cardiac functions and ameliorate associated symptoms in pre-clinical as well as clinical studies. SERCA2a activity can be regulated at multiple levels of a signaling cascade comprised of phospholamban, protein phosphatase 1, inhibitor-1, and $PKC{\alpha}$. SERCA2 activity is also regulated by post-translational modifications including SUMOylation and acetylation. In this review, we will highlight the molecular mechanisms underlying the regulation of SERCA2a activity and the potential therapeutic modalities for the treatment of heart failure.

With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing

  • Cho, Chung-Hyun;Lee, Keon Jin;Lee, Eun Hui
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.378-387
    • /
    • 2018
  • Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, $Ca^{2+}$ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic $Ca^{2+}$ level in skeletal muscle fibers is governed mainly by movements of $Ca^{2+}$ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated $Ca^{2+}$ entry (SOCE), a $Ca^{2+}$ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.