References
- Marieb EN and Hoehn K (2010) Human anatomy & physiology, 8th ed, Benjamin Cummings, San Francisco
-
Zucchi R and Ronca-Testoni S (1997) The sarcoplasmic reticulum
$Ca^{2+}$ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49, 1-51 -
Lee EH (2010)
$Ca^{2+}$ channels and skeletal muscle diseases. Prog Biophys Mol Biol 103, 35-43 https://doi.org/10.1016/j.pbiomolbio.2010.05.003 - Lee EH, Kim DH and Allen PD (2006) Interplay between intra- and extracellular calcium ions. Mol Cells 21, 315-329
- Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57, 71-108 https://doi.org/10.1152/physrev.1977.57.1.71
- Putney JW Jr. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7, 1-12 https://doi.org/10.1016/0143-4160(86)90026-6
- Hoth M and Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353-356 https://doi.org/10.1038/355353a0
-
Kurebayashi N and Ogawa Y (2001) Depletion of
$Ca^{2+}$ in the sarcoplasmic reticulum stimulates$Ca^{2+}$ entry into mouse skeletal muscle fibres. J Physiol 533, 185-199 https://doi.org/10.1111/j.1469-7793.2001.0185b.x -
Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a
$Ca^{2+}$ sensor that activates CRAC channels and migrates from the$Ca^{2+}$ store to the plasma membrane. Nature 437, 902-905 https://doi.org/10.1038/nature04147 -
Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated
$Ca^{2+}$ channel function. J Cell Biol 169, 435-445 https://doi.org/10.1083/jcb.200502019 -
Liou J, Kim ML, Heo WD et al (2005) STIM is a
$Ca^{2+}$ sensor essential for$Ca^{2+}$ -store-depletion-triggered$Ca^{2+}$ influx. Curr Biol 15, 1235-1241 https://doi.org/10.1016/j.cub.2005.05.055 - Parker NJ, Begley CG, Smith PJ and Fox RM (1996) Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37, 253-256 https://doi.org/10.1006/geno.1996.0553
- Williams RT, Manji SS, Parker NJ et al (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357, 673-685 https://doi.org/10.1042/bj3570673
- Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O and Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226-229 https://doi.org/10.1038/nature05108
- Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A and Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230-233 https://doi.org/10.1038/nature05122
- Vig M, Beck A, Billingsley JM et al (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16, 2073-2079 https://doi.org/10.1016/j.cub.2006.08.085
- Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179-185 https://doi.org/10.1038/nature04702
-
Vig M, Peinelt C, Beck A et al (2006) CRACM1 is a plasma membrane protein essential for store-operated
$Ca^{2+}$ entry. Science 312, 1220-1223 https://doi.org/10.1126/science.1127883 - Ito K, Komazaki S, Sasamoto K et al (2001) Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol 154, 1059-1067 https://doi.org/10.1083/jcb.200105040
-
Woo JS, Cho CH, Lee KJ, Kim DH, Ma J and Lee EH (2012) Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated
$Ca^{2+}$ entry via Orai1. J Biol Chem 287, 14336-14348 https://doi.org/10.1074/jbc.M111.304808 - Komazaki S, Nishi M, Takeshima H and Nakamura H (2001) Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice. Dev Growth Differ 43, 717-723 https://doi.org/10.1046/j.1440-169X.2001.00609.x
- Nishi M, Komazaki S, Kurebayashi N et al (1999) Abnormal features in skeletal muscle from mice lacking mitsugumin29. J Cell Biol 147, 1473-1480 https://doi.org/10.1083/jcb.147.7.1473
-
Shamoo AE and MacLennan DH (1974) A
$Ca^{{+}{+}}$ -dependent and -selective ionophore as part of the$Ca^{{+}{+}}$ plus$Mg^{{+}{+}}$ -dependent adenosinetriphosphatase of sarcoplasmic reticulum. Proc Natl Acad Sci U S A 71, 3522-3526 https://doi.org/10.1073/pnas.71.9.3522 -
Brandl CJ, deLeon S, Martin DR and MacLennan DH (1987) Adult forms of the
$Ca^{2+}$ ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem 262, 3768-3774 -
Murphy RM, Larkins NT, Mollica JP, Beard NA and Lamb GD (2009) Calsequestrin content and SERCA determine normal and maximal
$Ca^{2+}$ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. J Physiol 587, 443-460 https://doi.org/10.1113/jphysiol.2008.163162 -
Woo JS, Cho CH, Lee KJ, Kim DH, Ma J and Lee EH (2012) Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated
$Ca^{2+}$ entry via Orai1. J Biol Chem 287, 14336-14348 https://doi.org/10.1074/jbc.M111.304808 -
Lee KJ, Woo JS, Hwang JH et al (2013) STIM1 negatively regulates
$Ca^{2+}$ release from the sarcoplasmic reticulum in skeletal myotubes. Biochem J 453, 187-200 https://doi.org/10.1042/BJ20130178 - Jayaraman T, Brillantes AM, Timerman AP et al (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267, 9474-9477
- Timerman AP, Ogunbumni E, Freund E, Wiederrecht G, Marks AR and Fleischer S (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268, 22992-22999
- Avila G, Lee EH, Perez CF, Allen PD and Dirksen RT (2003) FKBP12 binding to RyR1 modulates excitationcontraction coupling in mouse skeletal myotubes. J Biol Chem 278, 22600-22608 https://doi.org/10.1074/jbc.M205866200
- Lee EH, Rho SH, Kwon SJ, Eom SH, Allen PD and Kim DH (2004) N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. J Biol Chem 279, 26481-26488 https://doi.org/10.1074/jbc.M309574200
- Phimister AJ, Lango J, Lee EH et al (2007) Conformationdependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols. J Biol Chem 282, 8667-8677 https://doi.org/10.1074/jbc.M609936200
-
Lee EH, Song DW, Lee JM, Meissner G, Allen PD and Kim DH (2006) Occurrence of atypical
$Ca^{2+}$ transients in triadin-binding deficient-RYR1 mutants. Biochem Biophys Res Commun 351, 909-914 https://doi.org/10.1016/j.bbrc.2006.10.115 - Lee JM, Rho SH, Shin DW et al (2004) Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. J Biol Chem 279, 6994-7000 https://doi.org/10.1074/jbc.M312446200
- Guo W and Campbell KP (1995) Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J Biol Chem 270, 9027-9030 https://doi.org/10.1074/jbc.270.16.9027
-
Lee KJ, Park CS, Woo JS, Kim DH, Ma J and Lee EH (2012) Mitsugumin 53 attenuates the activity of sarcoplasmic reticulum
$Ca^{2+}$ -ATPase 1a (SERCA1a) in skeletal muscle. Biochem Biophys Res Commun 428, 383-388 https://doi.org/10.1016/j.bbrc.2012.10.063 -
Lee KJ, Hyun C, Woo JS, Park CS, Kim DH and Lee EH (2014) Stromal interaction molecule 1 (STIM1) regulates sarcoplasmic/endoplasmic reticulum
$Ca^{2+}$ -ATPase 1a (SERCA1a) in skeletal muscle. Pflugers Arch 466, 987-1001 https://doi.org/10.1007/s00424-013-1361-6 - Lee EH, Cherednichenko G, Pessah IN and Allen PD (2006) Functional coupling between TRPC3 and RyR1 regulates the expressions of key triadic proteins. J Biol Chem 281, 10042-10048 https://doi.org/10.1074/jbc.M600981200
- Stiber J, Hawkins A, Zhang ZS et al (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10, 688-697 https://doi.org/10.1038/ncb1731
- Luik RM, Wang B, Prakriya M, Wu MM and Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538-542 https://doi.org/10.1038/nature07065
- Zhou Y, Wang X, Wang X et al (2015) STIM1 dimers undergo unimolecular coupling to activate Orai1 channels. Nat Commun 6, 8395 https://doi.org/10.1038/ncomms9395
-
Luik RM, Wu MM, Buchanan J and Lewis RS (2006) The elementary unit of store-operated
$Ca^{2+}$ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174, 815-825 https://doi.org/10.1083/jcb.200604015 - Penna A, Demuro A, Yeromin AV et al (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456, 116-120 https://doi.org/10.1038/nature07338
- Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876-890 https://doi.org/10.1016/j.cell.2009.02.014
- Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF and Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11, 337-343 https://doi.org/10.1038/ncb1842
- Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446, 284-287 https://doi.org/10.1038/nature05637
-
Launikonis BS, Murphy RM and Edwards JN (2010) Toward the roles of store-operated
$Ca^{2+}$ entry in skeletal muscle. Pflugers Arch 460, 813-823 https://doi.org/10.1007/s00424-010-0856-7 - Ma J and Pan Z (2003) Retrograde activation of storeoperated calcium channel. Cell Calcium 33, 375-384 https://doi.org/10.1016/S0143-4160(03)00050-2
-
Launikonis BS and Rios E (2007) Store-operated
$Ca^{2+}$ entry during intracellular$Ca^{2+}$ release in mammalian skeletal muscle. J Physiol 583, 81-97 https://doi.org/10.1113/jphysiol.2007.135046 - Wei-Lapierre L, Carrell EM, Boncompagni S, Protasi F and Dirksen RT (2013) Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun 4, 2805 https://doi.org/10.1038/ncomms3805
-
Edwards JN, Murphy RM, Cully TR, von Wegner F, Friedrich O and Launikonis BS (2010) Ultra-rapid activation and deactivation of store-operated
$Ca^{2+}$ entry in skeletal muscle. Cell Calcium 47, 458-467 https://doi.org/10.1016/j.ceca.2010.04.001 -
Darbellay B, Arnaudeau S, Bader CR, Konig S and Bernheim L (2011) STIM1L is a new actin-binding splice variant involved in fast repetitive
$Ca^{2+}$ release. J Cell Biol 194, 335-346 https://doi.org/10.1083/jcb.201012157 -
Hirata Y, Brotto M, Weisleder N et al (2006) Uncoupling store-operated
$Ca^{2+}$ entry and altered$Ca^{2+}$ release from sarcoplasmic reticulum through silencing of junctophilin genes. Biophys J 90, 4418-4427 https://doi.org/10.1529/biophysj.105.076570 - Zhao X, Weisleder N, Han X et al (2006) Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem 281, 33477-33486 https://doi.org/10.1074/jbc.M602306200
- Huang GN, Zeng W, Kim JY et al (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8, 1003-1010 https://doi.org/10.1038/ncb1454
- Stathopulos PB, Zheng L, Li GY, Plevin MJ and Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110-122 https://doi.org/10.1016/j.cell.2008.08.006
-
Ercan E, Chung SH, Bhardwaj R and Seedorf M (2012) Di-arginine signals and the K-rich domain retain the
$Ca^{2+}$ sensor STIM1 in the endoplasmic reticulum. Traffic 13, 992-1003 https://doi.org/10.1111/j.1600-0854.2012.01359.x - Saitoh N, Oritani K, Saito K et al (2011) Identification of functional domains and novel binding partners of STIM proteins. J Cell Biochem 112, 147-156 https://doi.org/10.1002/jcb.22910
-
Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA and Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated
$Ca^{2+}$ channels. Proc Natl Acad Sci U S A 103, 4040-4045 https://doi.org/10.1073/pnas.0510050103 - Grosse J, Braun A, Varga-Szabo D et al (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117, 3540-3550 https://doi.org/10.1172/JCI32312
- Stathopulos PB, Zheng L and Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284, 728-732 https://doi.org/10.1074/jbc.C800178200
- Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C and Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci U S A 108, 1337-1342 https://doi.org/10.1073/pnas.1015125108
- Covington ED, Wu MM and Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21, 1897-1907 https://doi.org/10.1091/mbc.e10-02-0145
-
Wang L, Zhang L, Li S et al (2015) Retrograde regulation of STIM1-Orai1 interaction and store-operated
$Ca^{2+}$ entry by calsequestrin. Sci Rep 5, 11349 https://doi.org/10.1038/srep11349 -
Zhang L, Wang L, Li S, Xue J and Luo D (2016) Calsequestrin-1 regulates store-operated
$Ca^{2+}$ entry by inhibiting STIM1 aggregation. Cell Physiol Biochem 38, 2183-2193 https://doi.org/10.1159/000445574 -
Shin DW, Pan Z, Kim EK et al (2003) A retrograde signal from calsequestrin for the regulation of store-operated
$Ca^{2+}$ entry in skeletal muscle. J Biol Chem 278, 3286-3292 https://doi.org/10.1074/jbc.M209045200 -
Zhao X, Min CK, Ko JK et al (2010) Increased storeoperated
$Ca^{2+}$ entry in skeletal muscle with reduced calsequestrin-1 expression. Biophys J 99, 1556-1564 https://doi.org/10.1016/j.bpj.2010.06.050 - Lee HJ, Bae GU, Leem YE et al (2012) Phosphorylation of Stim1 at serine 575 via netrin-2/Cdo-activated ERK1/2 is critical for the promyogenic function of Stim1. Mol Biol Cell 23, 1376-1387 https://doi.org/10.1091/mbc.e11-07-0634
-
Li T, Finch EA, Graham V et al (2012) STIM1-
$Ca^{2+}$ signaling is required for the hypertrophic growth of skeletal muscle in mice. Mol Cell Biol 32, 3009-3017 https://doi.org/10.1128/MCB.06599-11 - Darbellay B, Arnaudeau S, Konig S et al (2009) STIM1-and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem 284, 5370-5380 https://doi.org/10.1074/jbc.M806726200
- Darbellay B, Arnaudeau S, Ceroni D, Bader CR, Konig S and Bernheim L (2010) Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2. J Biol Chem 285, 22437-22447 https://doi.org/10.1074/jbc.M110.118984
- Phuong TTT and Kang TM (2015) Stromal interaction molecule 2 regulates C2C12 myoblast differentiation. Integr Med Res 4, 242-248 https://doi.org/10.1016/j.imr.2015.09.001
-
Antigny F, Sabourin J, Sauc S, Bernheim L, Koenig S and Frieden M (2017) TRPC1 and TRPC4 channels functionally interact with STIM1L to promote myogenesis and maintain fast repetitive
$Ca^{2+}$ release in human myotubes. Biochim Biophys Acta 1864, 806-813 https://doi.org/10.1016/j.bbamcr.2017.02.003 - Hoth M and Niemeyer BA (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 71, 237-271
-
Brandman O, Liou J, Park WS and Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum
$Ca^{2+}$ levels. Cell 131, 1327-1339 https://doi.org/10.1016/j.cell.2007.11.039 - Wang X, Wang Y, Zhou Y et al (2014) Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 5, 3183 https://doi.org/10.1038/ncomms4183
-
Oh MR, Lee KJ, Huang M et al (2017) STIM2 regulates both intracellular
$Ca^{2+}$ distribution and$Ca^{2+}$ movement in skeletal myotubes. Sci Rep 7, 17936 https://doi.org/10.1038/s41598-017-18256-3 - Yang X, Jin H, Cai X, Li S and Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 109, 5657-5662 https://doi.org/10.1073/pnas.1118947109
- Cui B, Yang X, Li S et al (2013) The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PLoS One 8, e74735 https://doi.org/10.1371/journal.pone.0074735
- Stathopulos PB, Schindl R, Fahrner M et al (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4, 2963 https://doi.org/10.1038/ncomms3963
- Hou X, Pedi L, Diver MM and Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308-1313 https://doi.org/10.1126/science.1228757
- Rothberg BS, Wang Y and Gill DL (2013) Orai channel pore properties and gating by STIM: implications from the Orai crystal structure. Sci Signal 6, pe9 https://doi.org/10.1126/scisignal.6306er9
- Pan Z, Yang D, Nagaraj RY et al (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4, 379-383 https://doi.org/10.1038/ncb788
-
Brotto MA, Nagaraj RY, Brotto LS, Takeshima H, Ma JJ and Nosek TM (2004) Defective maintenance of intracellular
$Ca^{2+}$ homeostasis is linked to increased muscle fatigability in the MG29 null mice. Cell Res 14, 373-378 https://doi.org/10.1038/sj.cr.7290237 - Nagaraj RY, Nosek CM, Brotto MA et al (2000) Increased susceptibility to fatigue of slow- and fast-twitch muscles from mice lacking the MG29 gene. Physiol Genomics 4, 43-49 https://doi.org/10.1152/physiolgenomics.2000.4.1.43
- Zhao X, Yoshida M, Brotto L et al (2005) Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol Genomics 23, 72-78 https://doi.org/10.1152/physiolgenomics.00020.2005
- Sopariwala DH, Pant M, Shaikh SA et al (2015) Sarcolipin overexpression improves muscle energetics and reduces fatigue. J Appl Physiol (1985) 118, 1050-1058 https://doi.org/10.1152/japplphysiol.01066.2014
- Boncompagni S, Michelucci A, Pietrangelo L, Dirksen RT and Protasi F (2017) Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle. Sci Rep 7, 14286 https://doi.org/10.1038/s41598-017-14134-0
-
Zhao X, Weisleder N, Thornton A et al (2008) Compromised store-operated
$Ca^{2+}$ entry in aged skeletal muscle. Aging Cell 7, 561-568 https://doi.org/10.1111/j.1474-9726.2008.00408.x - Zahn JM, Sonu R, Vogel H et al (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2, e115 https://doi.org/10.1371/journal.pgen.0020115
- Almada AE and Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17, 267-279 https://doi.org/10.1038/nrm.2016.7
- Berchtold MW, Brinkmeier H and Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80, 1215-1265 https://doi.org/10.1152/physrev.2000.80.3.1215
-
Woo JS, Hwang JH, Ko JK et al (2010) S165F mutation of junctophilin 2 affects
$Ca^{2+}$ signalling in skeletal muscle. Biochem J 427, 125-134 https://doi.org/10.1042/BJ20091225 - Picard C, McCarl CA, Papolos A et al (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360, 1971-1980 https://doi.org/10.1056/NEJMoa0900082
- Fuchs S, Rensing-Ehl A, Speckmann C et al (2012) Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol 188, 1523-1533 https://doi.org/10.4049/jimmunol.1102507
-
Goonasekera SA, Davis J, Kwong JQ et al (2014) Enhanced
$Ca^{2+}$ influx from STIM1-Orai1 induces muscle pathology in mouse models of muscular dystrophy. Hum Mol Genet 23, 3706-3715 https://doi.org/10.1093/hmg/ddu079 - Morgan-Hughes JA (1998) Tubular aggregates in skeletal muscle: their functional significance and mechanisms of pathogenesis. Curr Opin Neurol 11, 439-442 https://doi.org/10.1097/00019052-199810000-00005
- Tasca G, D'Amico A, Monforte M et al (2015) Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1. Neuromuscul Disord 25, 898-903 https://doi.org/10.1016/j.nmd.2015.07.008
- Okuma H, Saito F, Mitsui J et al (2016) Tubular aggregate myopathy caused by a novel mutation in the cytoplasmic domain of STIM1. Neurol Genet 2, e50 https://doi.org/10.1212/NXG.0000000000000050
- Walter MC, Rossius M, Zitzelsberger M et al (2015) 50 years to diagnosis: Autosomal dominant tubular aggregate myopathy caused by a novel STIM1 mutation. Neuromuscul Disord 25, 577-584 https://doi.org/10.1016/j.nmd.2015.04.005
- Bohm J, Chevessier F, Koch C et al (2014) Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1. J Med Genet 51, 824-833 https://doi.org/10.1136/jmedgenet-2014-102623
- Bohm J, Chevessier F, Maues De Paula A et al (2013) Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 92, 271-278 https://doi.org/10.1016/j.ajhg.2012.12.007
- MacLennan DH and Phillips MS (1992) Malignant hyperthermia. Science 256, 789-794 https://doi.org/10.1126/science.1589759
-
Nelson TE (2002) Malignant hyperthermia: a pharmacogenetic disease of
$Ca^{{+}{+}}$ regulating proteins. Curr Mol Med 2, 347-369 https://doi.org/10.2174/1566524023362429 -
Duke AM, Hopkins PM, Calaghan SC, Halsall JP and Steele DS (2010) Store-operated
$Ca^{2+}$ entry in malignant hyperthermia-susceptible human skeletal muscle. J Biol Chem 285, 25645-25653 https://doi.org/10.1074/jbc.M110.104976 - Dainese M, Quarta M, Lyfenko AD et al (2009) Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice. FASEB J 23, 1710-1720 https://doi.org/10.1096/fj.08-121335
- Yarotskyy V, Protasi F and Dirksen RT (2013) Accelerated activation of SOCE current in myotubes from two mouse models of anesthetic- and heat-induced sudden death. PLoS One 8, e77633 https://doi.org/10.1371/journal.pone.0077633
- Chelu MG, Goonasekera SA, Durham WJ et al (2006) Heat- and anesthesia-induced malignant hyperthermia in an RyR1 knock-in mouse. FASEB J 20, 329-330 https://doi.org/10.1096/fj.05-4497fje
- Jungbluth H (2007) Central core disease. Orphanet J Rare Dis 2, 25 https://doi.org/10.1186/1750-1172-2-25
- Ervasti JM and Campbell KP (1993) Dystrophin-associated glycoproteins: their possible roles in the pathogenesis of Duchenne muscular dystrophy. Mol Cell Biol Hum Dis Ser 3, 139-166
-
Edwards JN, Friedrich O, Cully TR, von Wegner F, Murphy RM and Launikonis BS (2010) Upregulation of store-operated
$Ca^{2+}$ entry in dystrophic mdx mouse muscle. Am J Physiol Cell Physiol 299, C42-50 https://doi.org/10.1152/ajpcell.00524.2009 -
Boittin FX, Petermann O, Hirn C et al (2006)
$Ca^{2+}$ -independent phospholipase A2 enhances store-operated$Ca^{2+}$ entry in dystrophic skeletal muscle fibers. J Cell Sci 119, 3733-3742 https://doi.org/10.1242/jcs.03184 -
Zhao X, Moloughney JG, Zhang S, Komazaki S and Weisleder N (2012) Orai1 mediates exacerbated
$Ca^{2+}$ entry in dystrophic skeletal muscle. PLoS One 7, e49862 https://doi.org/10.1371/journal.pone.0049862 -
Onopiuk M, Brutkowski W, Young C et al (2015) Store-operated calcium entry contributes to abnormal
$Ca^{2+}$ signalling in dystrophic mdx mouse myoblasts. Arch Biochem Biophys 569, 1-9 https://doi.org/10.1016/j.abb.2015.01.025 - Takamori M (2008) Autoantibodies against TRPC3 and ryanodine receptor in myasthenia gravis. J Neuroimmunol 200, 142-144 https://doi.org/10.1016/j.jneuroim.2008.06.001
- Zhang BT, Yeung SS, Cheung KK, Chai ZY and Yeung EW (2014) Adaptive responses of TRPC1 and TRPC3 during skeletal muscle atrophy and regrowth. Muscle Nerve 49, 691-699 https://doi.org/10.1002/mus.23952
- Cai C, Masumiya H, Weisleder N et al (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11, 56-64 https://doi.org/10.1038/ncb1812
- He B, Tang RH, Weisleder N et al (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan-deficient hamsters. Mol Ther 20, 727-735 https://doi.org/10.1038/mt.2012.5
- Weisleder N, Takizawa N, Lin P et al (2012) Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Transl Med 4, 139ra185
- Cai C, Weisleder N, Ko JK et al (2009) Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem 284, 15894-15902 https://doi.org/10.1074/jbc.M109.009589
-
Ahn MK, Lee KJ, Cai C et al (2016) Mitsugumin 53 regulates extracellular
$Ca^{2+}$ entry and intracellular$Ca^{2+}$ release via Orai1 and RyR1 in skeletal muscle. Sci Rep 6, 36909 https://doi.org/10.1038/srep36909 - Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H and Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158, 1089-1096 https://doi.org/10.1083/jcb.200203091
- Yang T, Allen PD, Pessah IN and Lopez JR (2007) Enhanced excitation-coupled calcium entry in myotubes is associated with expression of RyR1 malignant hyperthermia mutations. J Biol Chem 282, 37471-37478 https://doi.org/10.1074/jbc.M701379200
- Cherednichenko G, Ward CW, Feng W et al (2008) Enhanced excitation-coupled calcium entry in myotubes expressing malignant hyperthermia mutation R163C is attenuated by dantrolene. Mol Pharmacol 73, 1203-1212 https://doi.org/10.1124/mol.107.043299
-
Cho CH, Woo JS, Perez CF and Lee EH (2017) A focus on extracellular
$Ca^{2+}$ entry into skeletal muscle. Exp Mol Med 49, e378 https://doi.org/10.1038/emm.2017.208 - Feske S (2010) CRAC channelopathies. Pflugers Arch 460, 417-435 https://doi.org/10.1007/s00424-009-0777-5
- Lee EH, Woo JS, Hwang JH, Park JH and Cho CH (2013) Angiopoietin 1 enhances the proliferation and differentiation of skeletal myoblasts. J Cell Physiol 228, 1038-1044 https://doi.org/10.1002/jcp.24251
- Woo JS, Cho CH, Kim DH and Lee EH (2010) TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts. Exp Mol Med 42, 614-627 https://doi.org/10.3858/emm.2010.42.9.061