• Title/Summary/Keyword: Sandy sediment

Search Result 190, Processing Time 0.027 seconds

The Distribution and Habitation Characteristics of Zostera marina L. along the Southern Coast of Korea (남해안에서 자생하는 거머리말(Zostera marina L.)식물의 분포와 생육지 환경)

  • Lee, Sang-Yong;Lee, Sung-Mi;Jee, Hae-Geun;Choi, Chung-Il
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.4
    • /
    • pp.313-320
    • /
    • 2001
  • An ecological study was conducted to determine the geographic distribution, community structure, and habitat characteristics of eelgrass, Zostera marina L. beds along the southern coast of Korea. Plants and sediment samples were collected during June 2000 and December 2000 on twenty-eight locations, including two Cheju Island stations, which were used to compare morphological characteristics with habitat types. Z. marina populations existed from the intertidal to subtidal zone, mainly in the bays along the coast and the island, the barrier reef, and the estuary where the water depth was 0.5${\sim}$8.0m. Salinity range in Z. marina beds ranged 18.2 to 34.5%$_o$. Sediments of Z. marina beds contained 49.7${\sim}$99.1% of sand and were classified into sand, muddy sand, and sandy mud. Mean grain size varied from 1.5 to 4.4 phi. Height of vegetation shoots varied from 54.7 to 171.4 cm, depending on water depth, location, substrata and habitat types. quantitative morphological features that enabled recognition of the two phonetic groups were short-narrow leaf type and long-broad leaf type. Statistical analysis indicated that biomass of individual plants and their quantitative morphological characteristics were significantly correlated.

  • PDF

The Characteristics of Hydrogeological Parameters of Unconsolidated Sediments in the Nakdong River Delta of Busan City, Korea

  • Khakimov, Elyorbek;Chung, Sang Yong;Senapathi, Venkatramanan;Elzain, Hussam Eldin;Son, JooHyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.27-41
    • /
    • 2017
  • This study dealt with the characteristics and the interrelations of hydrogeological parameters such as hydraulic conductivity, dispersivity and effective porosity of unconsolidated sediments for providing the basic data necessary for the planning of the management and preservation of groundwater quality in the Nakdong River Delta of Busan City, Korea. Groundwater quality in this area has been deteriorated due to seawater intrusion, agricultural fertilizer and pesticide, industrial wastewater, and contaminated river water. The physical properties (grain size distribution, sediment type, sorting) and aquifer parameters (hydraulic conductivity, effective porosity, longitudinal dispersivity) were determined from grain size analysis, laboratory permeability test and column tracer test. Among 36 samples, there were 18 Sand (S), 7 Gravelly Sand (gS), 5 Silty Sand (zS), 5 Muddy Sand (mS), and 1 Sandy Silt (sZ). Hydraulic conductivity was determined through a falling head test, and ranged from $9.2{\times}10^{-5}$ to $2.9{\times}10^{-2}cm/sec$ (0.08 to 25.6 m/day). From breakthrough curves, dispersivity was calculated to be 0.35~3.92 cm. Also, effective porosity and average linear velocity were obtained through the column tracer test, and their values were 0.04~0.46 and 1.06E-04~6.49E-02 cm/sec, respectively. Statistical methods were used to understand the interrelations among aquifer parameters of hydraulic conductivity, effective porosity and dispersivity. The relation between dispersivity and hydraulic conductivity or effective porosity considered the sample length, because dispersivity was affected by experimental scale. The relations between dispersivity and hydraulic conductivity or effective porosity were all in inverse proportion for all long and short samples. The reason was because dispersivity was in inverse proportion to the groundwater velocity in case of steady hydrodynamic dispersion coefficient, and groundwater velocity was in proportion to the hydraulic conductivity or effective porosity. This study also elucidated that longitudinal dispersivity was dependent on the scale of column tracer test, and all hydrogeological parameters were low to high values due to the sand quantity of sediments. It is expected that the hydrogeological parameter data of sediments will be very useful for the planning of groundwater management and preservation in the Nakdong River Delta of Busan City, Korea.

Ecological and Morphological Characteristics of Zostera caulescens Miki (Zosteraceae) in Korea (한국산 수거머리말(Zostera caulescens Miki.)의 형태 및 생태적 특성에 대한 연구)

  • Lee, Sang-Yong;Suh, Young-Bae;Kim, Sang-Tae;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.345-357
    • /
    • 2002
  • Ecological characteristics on habitats and morphological features of the seagrass Zostera caulescens Miki in Korea were examined. The biogeographical distribution of Z. caulescens was confirmed in the south coast of the Korea. Zostera caulescens usually inhabits at the inner bay, where is sheltered from wave action and 3.0 to 6.5 m deep. The sediment in habitats is composed of very fine muddy sand or sandy mud. In morphology, Z. caulescens is easily distinguished from other species of the genus by the formation of vegetative canopy on the top of reproductive stems. The number of longitudinal ribs in testa was 24 revealed by scanning electron microscope (SEM) while the number of ribs in Z. marina has been often reported to be 16-20. Purplish anthocyanin spots were displayed on the surface when the testa was removed. We found that the size and shape of leaf epidermal cells in Z. caulescens were very different from those of Z. marina when the leaf cuticles were removed by maceration which could be useful characters for identifying Zostera species. The leaf of Z. caulescens displays two different casts of color when the fresh plant is closely observed. The margins of leaves appear brighter than the center of leaves due to the thickening by the development of paralleled venation in the middle of leaves. The comparison of two populations of Z. caulescens in Korea showed that they were considerably different in their shoot density and biomass. The shoot density and biomass at Gabae population was $367.3 m^{-2}\;and\;725.7g$ dry wt $m^P{-2}$ respectively, while those at Jukrim population were $112.5m^{-2}\;and\;392.0g\;dry\;wt\;m^{-2}$, respectively.

Sustainable Yield of Groundwater Resources of the Cheju Island (제주도 지하수자원의 최적 개발가능량)

  • Hahn, Jeong-Sang;Hahn, Kyu-Sang;Kim, Chang-Kil;Kim, Nam-Jong;Hahn, Chan
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.33-50
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic log and aquifer test were analyzed to determine hydrogeologic characteristics of the Cheju island. The groundwater. of the Cheju island is occurred in unconsolidated pyroclastic deposits and crinker interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types under unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300㎡/day and 0.12 respectively, The total storage of groundwater is estimated about 44 billion cubic meters. Average annual precipitation is about 3,390 million ㎥ among which average recharge is estimated for 1,494 million ㎥ being equivalent 44.1% of total annual precipitation with 638 million ㎥ of runoff and 1,256 million ㎥ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million ㎥(41% of annual recharge)and rest is discharging into the sea. The geologic logs of recently drilled thermal water wells indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy silt derived from mainly volcanic ashes at the 1st stage volcanic activity of the area is situated at the 120${\pm}$68m below sea level. Another low-permeable sedimentary rock called Seogipo-formation which is deemed younger than the former marine sediment is occured at the area covering north-west and western part of the Cheju island at the ${\pm}$70m below sea level. If these impermeable beds art distributed as a basal formation of fresh water zone of the Cheju island, the most of groundwater in the Cheju island will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF

Sutdy of Appropriate Media Selection and Early Life Cycle of Marine Free-Living Nematodes, Enoplolaimus sp. (Enoplida: Thoracostomopsidae) and Bathylaimus sp. (Enoplida: Tripyloididae) (해양 자유생활형 선충류 Enoplolaimus sp. (Enoplida: Thoracostomopsidae)와 Bathylaimus sp. (Enoplida: Tripyloididae)의 배양용 적합배지 선정 및 초기 생활사 연구)

  • SHIN, AYOUNG;KIM, DONGSUNG;KANG, TEAWOOK;OH, JE HYEOK;LEE, JIMIN;HONG, JAE-SANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.3
    • /
    • pp.109-124
    • /
    • 2018
  • In order to find the optimum culture condition for marine free-living nematoda in the laboratory, various agar media were developed and experiments were carried on nematodes. Nematodes have collected from the bottom of the sandy sediments' surface layer (about 5cm sediment) of Taean Mallipo beach's intertidal zone. Especially, with regard to agar medium, Killian medium was transformed slightly, density of agar had made a difference and this agar medium(height 2.0 mm on diameter 60 mm Petri dish) was divided. It was mixed with 5 different species of microorganism as nematodes' live food and added each culture medium. Five individuals of Enoplolaimus sp. on each culture medium were grown in a culture medium which was set on $20^{\circ}C$ and light blocked. Moreover, as a result of the optimum culture condition, 1.0% density of agar showed the highest survival rates (the average time of survival is 246.8 hours). On the other hand, the 0.4% density of agar adding Killian medium, bacto peptone and beef extract showed the lowest survival rates, which indicates the average time of survival is 27.6 hours. About Bathylaimus sp., on Killian medium's 1.0% density of agar(no feeding amount) showed the highest survival rates, which connects that the hatching rate 94.7% after 99.5 hours and it laid 7 eggs averagely on the spawning amount and the hatching rate experiment.

Sedimentary Environments of Pre-Holocene Kanweoldo Deposit in Cheonsu Bay, Western Coast of Korea (한국 서해 천수만 선현세 간월도 퇴적층의 퇴적환경)

  • Jung, Hoi-Soo;Um, In-Kwon;Lim, Dong-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.1
    • /
    • pp.32-42
    • /
    • 2002
  • The late Quaternary deposit of Cheonsu Bay, up to 20 m in thickness above the Jurassic granite basement, consists of two sedimentary units: an upper Holocene mud and sandy mud deposit (Unit M1), and a lower late Pleistocene sand and mud deposit (Unit M2; 'Kanweoldo Deposit&apos). Unit M1 is a typical Holocene tidal-flat deposit of Cheonsu Bay, showing a coarsening upward, retrogradational facies trend. This retrograding facies trend is probably due to a relative low sedimentation rate during Holocene transgression. Overlain unconformably by Unit M1, Unit M2 deposit reaches up to 14 m in thickness and is mainly composed of muddy sediment with yellow to gray color. This unit is characterized by a variety of tide-influenced signatures such as rhythmic bedding, flaser bedding, crab burrow fossil, marine dinoflagellate assemblage and authigenic glauconite mineral, indicating very similar depositional environment to those of Unit M1 deposit. It suggests that Unit M2 was probably accumulated under the tidal-flat environment during a pre-Holocene sea-level highstand. In particular, the uppermost 3-4 m of Unit M2 appears to have undergone subaerial exposure and subsequent weathering during the sea-level lowstand after deposition. Therefore, stratigraphic unconformity between Holocene and late Pleistocene sediments is highlighted by the desiccated and weathered surface of Unit M2.

Hydraulic Characteristics Investigation due to the Change of GapWidth between Artificial Reefs (인공리프 개구폭 변화에 따른 흐름특성 고찰)

  • Kim, Kyu-Han;Shim, Kyu-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.408-415
    • /
    • 2016
  • Small fishing ports and coastal structures installed in a relatively low sea water depth disturb the wave induced current and cause the collapse of equilibrium state of sediment transport. These structures creates diffracted waves and matter the concentration of waves to cause the beach erosion. In order to mitigate these eroding problems on the beach, many counter measurements were proposed such as detached breakwater, groin or headland; however, these methods interrupt the aesthetic view of sandy beach due to the exposed structures above the sea level and have difficulty of applying to those beaches with the good scenery. Furthermore, some of these methods create secondary environmental problems after the installations. To eliminate these problems, one of the countermeasures, artificial reefs have been selected and used worldwide to minimize the disturbance of the scenery and secondary effects on the environment. Meanwhile, it is important to set the design elements for installing the artificial reefs such as that of length, opening width, clearing distances from the shoreline and more. Nevertheless, there are no construction manuals or standards for designing the artificial reefs with these important design elements yet. In this study, different conditions of artificial reefs were used with various cases throughout hydraulic model test to precisely analyze the changes of waves and currents to propose the standards of design elements to install the artificial reefs.

Spatio-Temporal Dynamics of Estuarine Wetlands Related to Watershed Characteristics in the Han River Estuary (유역특성에 따른 한강하구 습지의 공간분포 및 변화분석)

  • Rho, Paik-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.344-354
    • /
    • 2007
  • Estuarine wetlands for 33 watersheds in the Han River estuary were delineated on topographic maps from the 1910s, 1970s, and 2000s. Then, these data were used to address the issue of spatial distribution and temporal variation. Watershed characteristics such as drainage density, location, watershed size, slope, and elevation were identified for each watershed to determine the relationship between watershed characteristics and spatial distribution of estuarine wetlands. The analysis of estuarine wetlands indicated that wetlands in the estuary had declined gradually between the 1910s and the 1970s, although most wetlands were lost since the 1970s mainly caused by the large development projects related to urban expansion in metropolitan Seoul. The sediment composition and formation processes of the wetlands differed with watershed location; mud flats dominate in the lower part of the estuary, and relatively more sandy and emergent-plant wetlands occur near the main channel and tributaries of the Han River. Relatively more estuary wetlands occur in large watersheds, which have high slopes and low elevations. Estuarine wetlands have been lost dramatically in the densely populated watershed regions (i.e., Han River Seoul, Han River Goyang, West Han River), while relatively more wetlands have remained in undeveloped regions, including the Lower Imjin River and Lower Han River. In particular, anthropogenic disturbance has played an important role in the loss of wetland through the conversion of wetland into agricultural and developed land.

Analysis of Characteristics of Plant, Soil Physical and Chemical of Salix spp. on the Environment of Namgang Dam Reservoir (남강댐 수변구역 버드나무류 군락의 식생분석 및 토양의 이화학적 특성)

  • Park, Jae-Hyeon;Kim, Ki Heung;Lee, Seok Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.161-169
    • /
    • 2013
  • This study was carried out to examine characteristics of physical and chemical current status and problems of Salix spp. communities based on growth characteristics by tree age and height of the tree species in around Namgang Dam reservoir area. Tree density in 4 survey areas was 5,284 trees/ha, but all areas need to control high tree density. Tree crown area in 4 survey areas was 9,786.4 $m^2/ha$ and crown area of Salix spp. was the most dominant among tree species in watershed of the Jinyang lake. Mean soil depth in 4 survey areas was 65.5 cm higher in the sedimental deposit soil (78 cm) than in forest soil (12.5 cm) near the watershed. Soil bulk density was also higher in the sedimental deposit soil than in forest soil because of poor porosity in the sandy sediment. Soil pH was higher in sedimental deposit soil (A, B horizon:pH 6.7) than in forest soil (A horizon:pH 5.3; B horizon:pH 5.2) because of originated from non-point source polution and detergent of domestic sewage. The results suggest that growth of Salix spp. could be poor because of low fertility with low cation exchange capacity in sedimental deposit soil.

Biogeochemical Reactions in Hyporheic Zone as an Ecological Hotspot in Natural Streams (자연 하천의 생태학적 중요 지점으로서 지표수-지하수 혼합대의 생지화학적 기작)

  • Kim, Young-Joo;Kang, Ho-Jeong
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.123-130
    • /
    • 2009
  • Hyporheic zone is an area where hydraulic exchanges occur between surface water and ground water. Such transient area is anticipated to facilitate diverse biogeochemical reactions by providing habitats for various microorganism. However, only a few data are available about microbial properties in hyporheic zone, which would be important in better understanding of biogeochemical reactions in whole streams. The study site is Naesung stream, located in the north Kyoung-Sang Province, of which sediment is sandy with little anthropogenic impacts. Soil samples were collected from a transect placed perpendicular to stream flow. The transect includes upland fringe area dominated by Phragmites japonica, bare soil, and soil adjacent to water. In addition, soil samples were also collected from downwelling and upwelling areas in hyporheic zone within the main channel. Soils were collected from 3 depth in each area, and water content, pH, and DOC were measured. Various microbial properties including extracellular enzyme activities ($\beta$-glucosidase, N-acetylglucosaminidase, phosphatase and arylsulfatase), and microbial community structure using T-RFLP were also determined. The results exhibited a positive correlation between water content and DOC, and between extracellular enzyme activities and DOC. Distinctive patterns were observed in soils adjacent to water and hyporheic zone compared with other soils. Overall results of study provided basic information about microbial properties of hyporheic zone, which appeared to be discernable from other locations in the stream corridor.

  • PDF