• Title/Summary/Keyword: Sand wave

검색결과 268건 처리시간 0.812초

Variation of Beach Processes and Harbor Sedimentation in an Area of Large Tide (조석이 큰 해역에서의 해안과정과 항만퇴적의 변화)

  • 신승호;이중우
    • Journal of Korean Port Research
    • /
    • 제15권1호
    • /
    • pp.57-74
    • /
    • 2001
  • In the past, the predictions of beach processes and harbor sedimentation were mainly relied on the hydraulic model tests and empirical methods. In recent years, however, as computers have come into wide use, more accurate models have gradually been developed and thus replaced those conventional methods. For prediction of topographical change near the coastal area, we need informations of wave and current conditions in the numerical model which should be calculated in advance. Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the new layout of the harbor and planned south breakwater for preventing intrusion of sand. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF

Design of a piezovibrocone and calibration chamber

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.177-190
    • /
    • 2010
  • This paper presents the details of indigenous development of the piezovibrocone and calibration chamber. The developed cone has a cylindrical friction sleeve of $150cm^2$ surface area, capped with a $60^{\circ}$ apex angle conical tip of $15cm^2$ cross sectional area. It has a hydraulic shaker, coupled to the cone penetrometer with a linear displacement unit. The hydraulic shaker can produce cyclic load in different types of wave forms (sine, Hover sine, triangular, rectangular and external wave) at a range of frequency 1-10 Hz with maximum amplitude of 10 cm. The piezovibrocone can be driven at the standard rate of 2 cm/sec using a loading unit of 10 ton capacity. The calibration chamber is of size $2m{\times}2m{\times}2m$. The sides of the chamber and the top as well as the bottom portions are rigid. It has a provision to apply confining pressure (to a maximum value of $4kg/cm^2$) through the flexible rubber membrane inlined with the side walls of the calibration chamber. The preliminary static as well as dynamic cone penetration tests have been done sand in the calibration chamber. From the experimental results, an attempt has been made to classify the soil based on friction ratio ($f_R$) and the cone tip resistance ($q_c$).

Sand-Box Evaluation for Vibration-Attenuation of Concrete Panels with Recycled Materials (재활용재 혼입콘크리트 패널의 진동감쇠성에 대한 사조실험)

  • 정영수;최우성;조성호
    • Magazine of the Korea Concrete Institute
    • /
    • 제10권4호
    • /
    • pp.171-182
    • /
    • 1998
  • Vibration-controlled concrete has been developed by using various concrete mixtures, such as latex, rubber powders, plastic resins and polystyrene(styrofoam). As part of the recycling research of obsolete aged tires and plastic materials, various vibration-reducing mixtures are used for 10 concrete panels having above 200 kg/cm$^2$ in uniaxial compressive strength. Plywood box with sand uniformly saturated by the raining device has been used for the analysis of the impact wave, of which data have been transfered by the FFT technique to comparatively investigate damping ratios of 10 concrete panels.According to wave propagation analysis on vibration-controlled concrete for this research, it can be concluded that Latex concrete has relatively larger damping ratios than those for noncontrolled normal concrete in a similar compressive strength

Effect of loading frequency and clay content on the dynamic properties of sandy-clay mixtures using cyclic triaxial tests

  • Alireza Hasibi Taheri;Navid Hadiani;S. Mohammad Ali Sadredini;Mahmood Zakeri Nayeri
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.317-328
    • /
    • 2024
  • Adopting a rational engineering methodology for building structures on sandy-clay soil layers has become increasingly important since it is crucial when structures erected on them often face seismic and cyclic wave loads. Such loads can cause a reduction in the stiffness, strength, and stability of the structure, particularly under un-drained conditions. Hence, this study aims to investigate how the dynamic properties of sand-clay mixtures are affected by loading frequency and clay content. Cyclic triaxial tests were performed on a total of 36 samples, comprising pure sand with a relative density of 60% and sand with varying percentages of clay. The tests were conducted under confining pressures of 50 and 100 kPa, and the samples' dynamic behavior was analyzed at loading frequencies of 0.1, 1, and 4 Hz. The findings indicate that an increase in confining pressure leads to greater inter-particle interaction and a reduced void ratio, which results in an increase in the soil's shear modulus. An increase in the shear strength and confinement of the samples led to a decrease in energy dissipation and damping ratio. Changes in loading frequency showed that as the frequency increased, the damping ratio decreased, and the strength of the samples increased. Increasing the loading frequency not only reflects changes in frequency but also reduces the relative permeability and enhances the resistance of samples. An analysis of the dynamic properties of sand and sand-clay mixtures indicates that the introduction of clay to a sand sample reduces the shear modulus and permeability properties.

Sediment Transport Calculation Considering Cohesive Effects and Its Application to Wave-Induced Topographic Change (점착력을 고려한 표사유동 수치모델의 제안과 파랑에 의한 지형변동의 적용성 검토)

  • Cho, Yong Hwan;Nakamura, Tomoaki;Mizutani, Norimi;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제25권6호
    • /
    • pp.405-411
    • /
    • 2013
  • A sediment transport calculation considering cohesive force is proposed to deal with the transport phenomena of cohesive sediment. In the proposed calculation, each sand particle is assumed to be surrounded by a thin layer of mud. The critical Shields parameter and bed-load sediment transport rate are modified to include the cohesive force acting on the sand particle. The proposed calculation is incorporated into a two-way coupled fluid-structure-sediment interaction model, and applied to wave-induced topographic change of artificial shallows. Numerical results show that an increase in the content ratio of the mud, cohesive resistance force per unit surface area and water content cause increases in the critical Shields parameter and decreases in the bed-load sediment transport rate, reducing the topographic change of the shallow without changing its trend. This suggests that mixing mud in the pores of the sand particles can reduce the topographic change of shallows.

Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing (동결에 따른 모래-실트 혼합토의 탄성파 특성)

  • Park, Junghee;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • 제13권4호
    • /
    • pp.27-36
    • /
    • 2012
  • The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.

Sensitivity Analysis in the Prediction of Coastal Erosion due to Storm Events: case study-Ilsan beach (태풍 기인 연안침식 예측의 불확실성 분석: 사례연구-일산해변)

  • Son, Donghwi;Yoo, Jeseon;Shin, Hyunhwa
    • Journal of Coastal Disaster Prevention
    • /
    • 제6권3호
    • /
    • pp.111-120
    • /
    • 2019
  • In coastal morphological modelling, there are a number of input factors: wave height, water depth, sand particle size, bed friction coefficients, coastal structures and so forth. Measurements or estimates of these input data may include uncertainties due to errors by the measurement or hind-casting methods. Therefore, it is necessary to consider the uncertainty of each input data and the range of the uncertainty during the evaluation of numerical results. In this study, three uncertainty factors are considered with regard to the prediction of coastal erosion in Ilsan beach located in Ilsan-dong, Ulsan metropolitan city. Those are wave diffraction effect of XBeach model, wave input scenario and the specification of the coastal structure. For this purpose, the values of mean wave direction, significant wave height and the height of the submerged breakwater were adjusted respectively and the followed numerical results of morphological changes are analyzed. There were erosion dominant patterns as the wave direction is perpendicular to Ilsan beach, the higher significant wave height, and the lower height of the submerged breakwater. Furthermore, the rate of uncertainty impacts among mean wave direction, significant wave height and the height of the submerged breakwater are compared. In the study area, the uncertainty influence by the wave input scenario was the largest, followed by the height of the submerged breakwater and the mean wave direction.

Factors Affecting Longshore Current Profile (연안유속분포 형상에 미치는 제인자)

  • 김경호;윤영호;조재희
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제3권2호
    • /
    • pp.108-115
    • /
    • 1991
  • This paper aims at the elucidation of the characteristics of longshore current profile after wave breaking. Wave breakers are always accompanied by complex turbulent process, wave energy losess occur and the mean water level also varies due to the gradient of radiation stress. These with other factors result in the development of longshore currents. Longshore currents have relations to the alongshore sand transport and to the diffusion of contaminants in nearshore region, thus the understanding and elucidation of them are very important from the engineering point of view. Using the calculated results, the factors such as lateral mixing cofficients, bed shear stress. wave angle. wave steepness and bottom slope. which are influencing the longshore current profile. are examined. Also, by comparing the results of longshore currents with the experimental data obtained by other investigators, the procedure proposed in the present study is shown to be valid.

  • PDF

A Study on Characteristics of Coastline Change in Eastern Coast Korea (한국 동해안의 변화특성)

  • 이종태
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제15권1호
    • /
    • pp.35-42
    • /
    • 1979
  • This paper concerns the receding of the eastern coastline of Korean peninsula at a macroscopic point of view, the result is as following. 1. Eastern coast is gradually developed from maturity stage to full maturity stage. 2. The coastline recession due to sea level rise is amounted to the receding distance, x=0.045 m per yr. 3. The author proposes another classification from the new view point, which is classified by comparing quantities between river supplying sediment loads, and the littoral drifting due to wave actions. According this, eastern coast is receding(Type Q-A), and we could find it's geomorphological characteristics. 4. The general piofile of eastern coast sand beach is erosional storm profile(Type I) which accompany offshore bar. 5. From the wave measuring data of eastern coast(Hoopo port), I can derive the linear regression line of the exceedance probability of wave height from the log-normal distribution. $z=O. 113+4.335 log_lo H, r=0.983.$ Above equation made it possible to estimate $\omega[=P(H>H_c)]for the effective wave height H_c=2. Om4, 4. Om and their corresponding values are considerable (7.8%, 0.3%) 6. Eastern coastline certainly have the tendency of erosive and receding, owing to the sea level rise, poor sediment source and effective wave actions. It's very desirable to survey coastline evolution for a long time systematically, in order to make more elaborate diagnosis.

  • PDF

A Study for the Construction of the P and S Velocity Tomogram from the Crosswell Seismic Data Generated by an Impulsive Source (임펄시브 진원에 의한 공대공 탄성파기록으로부터 P파, S파 속도 영상도출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • 제6권3호
    • /
    • pp.138-142
    • /
    • 2003
  • Crosswell seismic data were acquired in three sections crossing a tunnel of 3 different types; one was empty, another was ailed by sand, and the other was filled by rock debris. Both the P- and S-wave first arrivals were picked and the traveltime tomography was conducted to generate the P- and S- wave velocity tomograms on the all three sections. Among six tomograms, only one tomogram shows a low velocity zone that can be interpreted as a tunnel image. The tomogram is the P wave velocity image of a section that crosses an empty tunnel. The result of numerical analysis for the spatial resolution of the traveltime tomography was consistent to this finding.