• Title/Summary/Keyword: Sand stone

Search Result 179, Processing Time 0.028 seconds

The Basic Study on the Underwater-Hardening Epoxy Mortar Using Stone Powder Sludge (석분슬러지를 이용한 수중 경화형 에폭시 모르타르의 개발에 관한 기초적 연구)

  • Jung Eun-Hye;Kawg Eun-Gu;Bae Dae-Kyung;Cho Sung-Hyun;Bae Kee-Sun;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.409-412
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performances are considered in structures. In generally, epoxy mortar is used to repair materials of underwater concrete. It is divided epoxy and filler which is organized cement and sand. Cement can be replaced by stone powder sludge in waste because the grading of stone powder sludge in drying state has similar to that of cement. As result of study, it is possible that stone powder sludge can be applied for replacement materials of cement in epoxy mortar, because the strength is not different when filler in epoxy mortar is alternated stone powder sludge.

  • PDF

Study on the Properties of Concrete according to the Grading of Crushed Stone (부순 굵은골재의 입도에 따른 콘크리트의 특성에 관한 연구)

  • Choi Se Jin;Lee Seong Yeon;Yeo Byung-Chul;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.213-216
    • /
    • 2004
  • Aggregate occupies about 70 to 80 percent by volume in concrete as skeleton of concrete, but recently, it has been insufficient in quantity to collect good natural aggregate because of exhaustion of aggregate resources. In case of Korea, in 2002, the using ratio of crushed stone occupies about $97\%$ of whole coarse aggregate, and ratio of crushed sand occupies about $18.3\%$ of whole fine aggregate. This is an experimental study to compare and analyze the properties of concrete according to the grading of crushed stone to improve quality and mix design of concrete using crushed stone. According to results, it was found that grading level of crushed stone in the range of G42 to G60 was better than any other grading level in terms of fluidity and compressive strength. And it is considered to be in the range of 6.52 to 6.85 in terms of FM.

  • PDF

Characteristics of Settlement and Bearing Capacity of Soft Ground Improved by Granular Pile (Granular Pile에 의해 개량된 연약지반의 지지력 및 침하특성)

  • 천병식;여유현
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.289-294
    • /
    • 2002
  • Sand Compaction Pile (SCP) method, which uses sand material, is frequently used in Korea. However, the use of sand for SCP faces environmental and economical problems with the shortage of its resources. Therefore, it is necessary to substitute other materials for compaction piles. One of the alternatives is using gravel in lieu of sand. Granular Pile, constituted with sand and crushed-stone, is one of the methods to improve soft clay and loose sandy ground. In this study, modeled pile load tests are performed in test cell. The observations are made on the consolidation and the variation of water table of three different grounds, original, sand pile installed, and granular pile installed ground. In addition, engineering characteristics such as bearing capacity, settlement and drainage are investigated. The test results show that Gravel Compaction Pile (GCP) is more efficient for increasing bearing capacity and reducing settlement than SCP and had similar pore water pressure dissipation to sand. Therefore, the results show that GCP can be a good substitution for SCP.

  • PDF

An Experimental Study on the Rheological Properties of the Combined Self-Compacting Concrete by Quality Variations (품질변동에 따른 병용계 자기충전 콘크리트의 유동특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2014
  • The purpose of this study is to investigate experimentally the variation factors range having influence on the rheological properties of the combined self-compacting concrete according to materials quality, weighting error and site conditions. Two types cement (blast-furnace slag cement and belite cement), lime stone powder as binder and the optimum mix proportions in the preceded study are selected for this study. Also, variations for sensitivity test are as followings; (1) Concrete temperature 3 cases (2) Surface moisture of sand 5cases (3) Fineness modulus of sand 5cases (4) Specific surface of lime stone powder 3cases (5) Dosage of chemical admixture 5cases. Slump flow ($650{\pm}50mm$), 500 mm reaching time (($7{\pm}3sec$), V-type flowing time ($15{\pm}5sec$) and U-box height (min. 300 mm) are tested for sensitivity. As test results, the variations range for quality control are as followings. (1) Concrete temperature; $10{\sim}20^{\circ}C$(below $30^{\circ}C$) (2) Surface moisture of sand; $base{\pm}0.6%$ (3) Fineness modulus of sand; $2.6{\pm}0.2$ (4) Dosage of chemical admixture; $base{\pm}0.2%$ (5) Specific surface of lime stone powder $6000cm^2/g$. Compared with two types cement including based belite cement (binary type) and based slag cement (ternary type), the combined self-compacting concrete used belite cement type is most stable in the quality control because of high contents for lime stone powder and $C_2S$. It is to propose a control scheme of the combined self-compacting concrete in the actual construction work.

Denudation Characteristics of the Rockily Eroded Mountains in Seoul Metropolitan Area (수도권지역(首都圈地域) 산지암반사면(山地岩盤斜面)의 황폐특성(荒廢特性)에 관한 기초적(基礎的) 연구(硏究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.1
    • /
    • pp.17-26
    • /
    • 1987
  • To develop the rehabilitation measures for rockily denuded forest lands which are widely distributed in Seoul metropolitan area, erosional characteristics of denudation should, first of all, be evaluated and analysed. As a fundamental study for developing such technical measures, the rockily denuded lands were classified into 6 types according to denudation features of the mountain land, and also movements of stone debris-and-sand on rock-exposed hillslopes were measured and analysed. The 6 basic types of denudation features include a) natural rock-outcrop-exposed land, b) stone debris-and-sand scattered land, c) stone debris-and-sand deposited land, d) coarse sand producing bare land susceptible to weathering and erosion, e) dwarfed pine growing land, and f) torrential valley susceptible to the debris slides. In the stone debris-and-sand scattered hillslopes (type b), average amount of moved-down debris reached to about 3.9 ton/ha/yr due to surface washing and slidings. In the particle size distribution of the moved-down debris, it amounts to about 25% of 10-25mm, about 15% of 5-10mm, about 24% of 2-5mm, and about 36% of less than 2mm in diameter class, respectively. The detailed experimental studies should be accomplished further more about the denudation processes including weathering, erosion and debris slides on rock-exposed hillslopes.

  • PDF

Application of Copper Slag as Sand Substitute in SCP Pilot tests (SCP 현장시험시공을 통한 동슬래그의 모래대체재로서의 적용성 연구)

  • 천병식;정헌철;김경민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.613-620
    • /
    • 2002
  • Sand Compaction Pile(SCP) is a soil improvement method that a sand charge is introduced into the pipe, and the pipe is withdrawn part away while the sand pile is compacted and its diameter is enlarged. The sand used in this method should be of good quality. In Korea, crushed stone and washed sea sand are used frequently in SCP. However, use of these materials is restricted because of environmental problem and deficiency of supply. In the copper smelting process, about 0.7 million tons of copper slag are produced in Korea. The range of particle size distribution of copper slag is from 0.15mm to 5mm, so it can be a substitute for sand, and the relatively high specific gravity compared with the sand, is its characteristic. Copper slag is hyaline and so stable environmentally that in foreign country, such as Japan, Germany etc., it is widely used in harbor, revetment and offshore structure construction works. Therefore, in this study, the several laboratory tests were peformed to evaluate the applicability of copper slag as a substitute for sand of SCP. From the mechanical property test, the characteristics of sand and copper slag were compared and analyzed, and from laboratory model test, the strength of composite ground was compared and analyzed by monitoring the stress and ground settlement of clay, SCP and copper slag compaction pile. Specially, this study focused on the application of copper slag as sand substitute in SCP pilot tests based on laboratory tests results.

  • PDF

A State of the Art for the Vibrated Crushed-stone Compaction Pile (진동쇄석다짐말뚝공법의 기술적 수준)

  • Choi, Yong-Kyu;Kim, Won-Cheul;Jung, Chang-Kyu;Lee, Min-Hee;Kim, Tae-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.65-77
    • /
    • 2002
  • Based from the results of various field and laboratory tests, it was determined that VCCP(Vibrated Crushed-stone Compaction Pile) Method is more effective compared to SCP(Sand Compaction Pile) Method. VCCP method effectively increases soil bearing capacity and reinforces soil and slopes, prevents liquefaction, enhances drainage. But when it comes to the engineering design these factors are not considered, instead designs are performed using practical methods and equations. Furthermore, this method is very economical since crushed stone can be used instead of sand and it can be also used in off-shore construction. In this paper, it will be synthetically considered technical state at the present time, research object after this and necessity of research for VCCP Method.

  • PDF

Use of Stone Powder Sludge in Fly Ash-Based Geopolymer

  • Choi, Se-Jin
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • Stone powder sludge is a by-product of the manufacturing process of crushed sand. Most of it is dumped with soil in landfills, and the disposal of stone powder sludge causes a major environmental problem. This paper investigates the applicability of stone powder sludge in fly ashbased geopolymer. For this, stone powder sludge was used to replace fly ash at a replacement ratio of 50% and 100% by weight. The compressive strength of the samples was measured and scanning electron microscopy/ energy dispersive spectroscopy (SEM/EDS) analysis and X-ray diffraction (XRD) were performed. The test results indicated that the optimum level of the alkali activator ratio ($Na_2SiO_3$/NaOH) for fly ash-based geopolymer using stone powder sludge was 1.5. The strength development is closely related to the NaOH solution concentration. In addition, the compressive strength of the sample cured at $25^{\circ}C$ was significantly improved between 7 days and 28 days, even though the strength of the sample showed the lowest value at 7 days. Microscopy results indicated that a higher proportion of unreacted fly ash spheres remained in the sample with 5M NaOH, and some pores on the surface of the sample were observed.

A Fundamental Study on Vibrated Crushed-stone Pile for the Improvement of Liquefaction Resistance (액상화 방지를 위한 진동쇄석말뚝에 관한 기초적 연구)

  • 천병식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.105-111
    • /
    • 2000
  • If a saturate sand is subjected to ground vibrations it tends to compact and decrease in volume. if drainage is unable to occur the tendency to decrease in volume results in an increase in pore water pressure and if the pore water pressure build up to the point at which it is equal to the overburden pressure the effective stress becomes zero the sand loses its strength completely. This phenomenon is called "Liquefaction" It is associated primarily but not exclusively with saturated cohesion soils. The attention and study on liquefaction have been growing since the earthquake in Niigita Japan in 1964. Many researchers on liquefaction effect have been carried out in many countries under the potential influence of earthquake including Japan. However little research on liquefaction has been reported in Korea because Korea has been considered to be safe from earthquake. The term "liquefaction" is only known among geotechnical engineers,. In this paper overview of liquefaction and the evaluation on the applicability of vibrated crushed-stone pile as a liquefaction prevention method are presented.ethod are presented.

  • PDF