• Title/Summary/Keyword: Sand elimination

Search Result 12, Processing Time 0.021 seconds

Sand Elimination in Shortnecked clam, Ruditapes philippinarum, Harvested from Western Coast of Korea (서해산 바지락 (Ruditapes philippinarum)의 토사 배출 조건)

  • SONG Ki-Cheo1;MOK Jong-Soo;KANG Chang-Su;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.179-183
    • /
    • 2001
  • Shortnecked clam, Ruditapes philippinarum, is one of the very important shellfish produced in south-western coast of Korea. But it's ready to be polluted and have sand in flesh because it mainly inhabit in silt at the inside of coastal area. This study was carried out to obtain informations about the elimination of sand in shortnecked clam harvested from western coast of Korea. During rearing shortnecked clams in water tank, the elimination rates of sand from them at 6, 13, 23, $28^{\circ}C$ were 59.0, 88.2, 97.9, $96.1^{\circ}C$ after 48 hours, respectively. The sand was eliminated above $95^{\circ}C$ from the shellfish at 32,9 to $40\%_{\circ}$ of salinity after 48 hours. But the sand elimination from them was incomplete and inconsistent at 10 to 20 of salinity. The sand was eliminated rapidly at pH 1.9 to 9.0 however, its elimination was not effective at neutral or acidity range, It was found that the sand elimination was most effective at $23^{\circ}C, 35\%_{\circ}$ salinty and pH 9.0. Reasonable flow rate for sand eliminate in shortnecked clam was above 150 L/min./shellfish $m^3$ under both 3,000 and 4,000 L/shellfish $m^3$, and above 100 L/min,/shellfish $m^3$ under both 6,000 and 8,000 L/shellfish $m^3$ in water tank.

  • PDF

Sand Elimination and Microbial Depuration in Surf clam, Mactra veneriformis, Harvested from Western Coast of Korea (서해산 동죽 (Mactra veneriformis)의 토사 배출 및 미생물 정화 조건)

  • SONG Ki-Cheo1;MOK Jong-Soo;KANG Chang-Su;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.184-189
    • /
    • 2001
  • Surf clam, Mactra veneriformis, is a important shellfish produced in south-western coast of Korea. But it's ready to be contaminated and have sand in flesh because it mainly inhabit in silt at tHe inside of coastal area. We determined optimum conditions for the sand elimination and microbial depuration in the shellfish harvested from western coast of Korea. It was found that the most effective conditions of process water for the sand elimination were $23^{\circ}C$, $32.9-35.0\%_{\circ}$ salinity and pH $7.9\~9.0.\;A$ surf clam contained about 210 mg of sand whose $94\%$ was eliminated after 24 hours in natural sea water ($32.9\%_{\circ}$ , pH 7.9) controlled at $23^{\circ}C$. To eliminate both sand and microorganisms contaminated in surf clam, the process water should be run during at least 36 hours for the former and 24 hours for the latter at 150 L/minute/$m^3$of shellfish, when its volume was above 4,000 L/$m^3$ of shellfish in 2 tons of tank.

  • PDF

Investigation of Reclamation for Waste $CO_2$ Mold Sand of Steel Foundries in Busan and Gyeong Area (부산 ${\cdot}$ 경남지역 주강 공장의 $CO_2$ 주형 고사의 발생실태와 재생에 관한 연구)

  • Choi, Jun-Oh;Kim, Min-Seop;Choi, In-Seok;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • According to the investigation of waste $CO_2$ molding sand in the 15 steel foundries in Busan and Gyeong area, about 1 ton of waste $CO_2$ molding sand per ton of steel castings production was produced In order to reduce amount of $Na_2O$, Loss of Boiling (L.O.B), Loss of Ignition (L.O.I), Conductivity and PH which are present in the waste $CO_2$ molding sand below the reclamation effect, more than 50% of elimination for reclamation was required. It was found that the waste $CO_2$ molding sand does not contain a harmful component designated by industrial waste materials. Reclamation of the waste $CO_2$ molding sand was practically achieved by an abrasive-dry reclamation process. According to bench time of the sodium silicate-bonded $CO_2$ molding sand, reduction of compressive strength and surface stability index(S.S.I) become slowdown. Therefore, the reclaimed sand could be allowed the reuse of molding sand in $CO_2$ molding process including core sand.

Distribution Patterns of Surface Sediments of the Jangan Linear Sand Ridge off the Northern Taean Peninsula, in the Mid-west Coast of Korea (서해 중부 태안반도 북부 해역의 장안사퇴 표층퇴적물 분포 특성)

  • TAE SOO CHANG;EUNIL LEE;DO-SEONG BYUN;HWAYOUNG LEE;SEUNG-GYUN BAEK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.14-27
    • /
    • 2024
  • Unlike the shelf sand ridges moribund in motion, nearshore sand ridges are highly mobile, sensitive to changes in ocean environments, thereby becoming of particular interest with respect to morphological changes. About 5 km off the Daesan port, the Jangan Sand Ridge has been undergoing severe subsea morphological change over the past two decades. Understanding the nature of sand ridges is critical to elucidate the causes of morphological changes. In this context, this study aims at understanding the characteristics and distribution patterns of surface sediments of the ridge and its vicinity. For this purpose, 227 sediment samples were acquired using a grab-sampler, the grain sizes being analysed by the sieve-pipette method. In addition, comparison of grain sizes in sediments between 1997 and 2021 was made in order to investigate the 25-years change in sediment composition. Surface sediments along the ridge axis are fine to medium sands with 2-3 phi in mean grain size, whereas, in the trough of ridge, the sediments are composed of gravels and muddy sandy gravels with mean sizes of -2 to -6 phi. Sediments in the crest of the ridge are well-sorted with normal distribution, on the other hand, the basal sediments are poorly-sorted and positively skewed. Along the ridge crest, the sediments are negatively skewed. From 1997 to 2021, the ridge sediments became largely coarser about 0.5 phi. Such coarsening trend in mean grain size can be explained either by elimination of fine sediments during high waves in winter or elimination of fines suspended during sand mining activities in the past. Spatial distribution pattern of surface sediments shows that ca. 30 m thick of the sand ridge itself overlies the thin relict gravels. The strong asymmetry of sand ridge, the exposure of ridge base, and reworked gravel lags suggest that Jangan sand ridge is probably sediment-deficit and hence erosive in nature at present.

Use of biofilter as pre-treatment of polluted river water for drinking water supply

  • Suprihatin, Suprihatin;Cahyaputri, Bunga;Romli, Muhammad;Yani, Mohamad
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • Innovations in the biofiltration process can provide effective solutions to overcome crucial water pollution problems. The elimination of pollutants is a result of the combined effects of biological oxidation, adsorption and filtration processes. This research aims to evaluate the performance of quartz sand biofiltration for removing total suspended solids, turbidity, color, organic matter, and ammonium from polluted river water and develop an empirical model for designing quartz sand biofilters for the treatment of polluted river water. Experiments were conducted using two biofilter units filled with quartz sand as filter media. A set of experiments were performed to evaluate the effect of hydraulic retention time on biofilter performance in removing water contaminants. The kinetics of organic matter removal were also determined to describe the performance of the biofilter. The results show that biofiltration can significantly remove river water pollutants. Removal efficiency depends on the applied hydraulic retention time. At a hydraulic retention time of two hours, removal efficiencies of total organics, ammonium and total suspended solids were up to 78%, 82%, and 91%, respectively. A model for designing quartz sand biofiltration has been developed from the experimental data.

Reduction of waterborne microorganisms in treated domestic wastewater for reuse in agriculture: Comparison between floating media filter and sand filter

  • Semsayun, Chalanda;Chiemchaisri, Wilai;Chiemchaisri, Chart;Patchanee, Nopparat
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • This study aims to investigate the use of a floating media filter (FMF) to eliminate waterborne microorganism in treated domestic wastewater for reuse in agriculture. A conventional sand filter (SF) was used concurrently to compare treated water quality. The total/fecal coliforms and somatic coliphage were employed as fecal indicators. The result showed that the FMF was fed with 3 times higher infiltration rate ($15m^3/m^2.h$) than that in the SF ($5m^3/m^2.h$), in which both filters gave similar coliform removal at 6 hours operation. The somatic coliphage elimination tended to increase with operational time for the FMF while that of the SF showed decreasing trend. When a 24 hour continuous operation was applied for the FMF, it showed better removal of somatic coliphage (78%), fecal coliforms (60%) and total coliforms (56%) than that of 6 hour operation. In conclusion, the FMF gave better performance than the SF did by producing a good quality of treated water for agriculture in terms of waterborne microorganisms including turbidity and suspended solids.

Effect of S.E.C Mixing on the Properties of Concrete (S.E.C 방식에 의한 콘크리트의 혼합효과에 관한 연구)

  • 김기형;박원태;최재진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.133-139
    • /
    • 1997
  • Conventional concrete mixing method is to put all of the materials simultaneously into a mixer and mix for a required time. However, recently concrete researchers have reported that mixing sequence iufluences the properties of concrete. This study discusses the influence of mixing sequence and partitioning addition of mixing water. Concrete, by method of partitioning addition of mixing water, was found to have substantially stronger strength than conventional concrete with the same water-cement ratio. This means that a higher strength concrete could be obtained by using “Sand Enveloped with Cement”(S.E.C) mixing technique. Both a high bond strength between cement paste and aggregate, and elimination of bleeding both contribute to improving the strength of S. E. C concrete.

  • PDF

Control of Several Fungi in the Recirculating Hydroponic System by Modified Slow Sand Filtration (재순환 양액재배시 저속 모래여과기 시스템을 이용한 진균류 제어)

  • Park, K.W.;Lee, G.P.;Kim, M.S.;Lee, S.J.;Seo, M.W.
    • Horticultural Science & Technology
    • /
    • v.16 no.3
    • /
    • pp.347-349
    • /
    • 1998
  • Slow sand filtration was modified and applied for the determination of eliminating efficacy of various fungi and for recommending an easy approach to growers. After 1,500 liter filtration, Fusarium oxysporum was eliminated by several substrates such as activated charcoal (92.5% elimination), silica (90.8%), vermiculite (90.5%), sand (82.3%), perlite (50.4%), and hydroball (21.2%). Silica was able to eliminate several fungi by maximal ratio, which was corresponded to Fusarium oxysporum 120 cfu/mL. Collectotrichum lagenarium 98 cfu/mL. Phytophthora capsici 82 cfu/mL, Botrytis cinerea 62 cfu/mL, Pythium spp. 42 cfu/mL, and Sclerotinia ssp. 52 cfu/mL. In this case, the change of EC was minor and pH was maintained to about 7. In deep flow culture of 'Ddooksum Cheokchookmyeon' lettuce and 'Seokwang' tomato, silica-, activated charcoal-, and vermiculite-based filtration system successfully eliminated Fusarium oxysporum and Phytophthora capsici from the nutrient solution. As a result, these plants were not diseased by ten weeks after inoculation. With this system, growers can easily control the root-zone fungi in the recirculating hydroponic system.

  • PDF

Effects of Slow Release Fertilizer and Dispersant on Biodegradation of Oil Contaminated in Sand Seashore Mesocosms (지속성 영양염제와 유분산제가 해변모래에 오염된 유류의 생분해에 미치는 영향)

  • 손재학;권개경;김상진
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • To evaluate the effects of slow release fertilizer and chemical dispersant on oil biodegradation, mesocosm studies were conducted on sand seashore. The rapid removal rates (85%) of aliphatic hydrocarbons and the simultaneous decreases of n-$C_{17}$/pristane (69%) and $n-C_{18}/phytane$ (61%) ratios by the addition of slow-release fertilizer (SRF) within 37 days of experiment indicated that SRF could enhance the oil degrading activity of indigenous microorganisms in sand mesocosm. Although the growth of heterotrophic bacteria and petroleumdegrading bacteria in the mesocosm treated with $Corexit 9527^{R}$ was stimulated, the biological oil removal based on the ratios of $Corexit 9527^{R}$ and $n-C_{18}/phytane$ was inhibited. Removal rates of aliphatic hydrocarbons (56%), and n-$C_{17}$/pristane (27%) and $n-C_{18}/phytane$ (17%) ratios by the addition of chemical dispersant $Corexit 9527^{R}$ were similar or lower than those values of control (50, 60, 46%), respectively. The biodegradation activity, however, when simultaneously treated with SRF and $Corexit 9527^{R}$, was not highly inhibited and even recovered after the elimination of chemical dispersant. From these results it could be concluded that the addition of SRF enhanced the oil removal rate in oligotrophic sand seashore and chemical dispersant possibly inhibit the oil biodegradation. Hence, in order to prevent the unrestrained usage of chemical dispersant in natural environments contaminated with oil, the National Contingency Plan of Oil Spill Response should be carefully revised in consideration of the application for bioremedaition techniques.

Use of the Spent Bleaching Earth from Palm Oil Industry in Non Fired Wall Tiles

  • Wangrakdiskul, Ubolrat;Khonkaew, Pimolwan;Wongchareonsin, Thanya
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.15-24
    • /
    • 2015
  • Currently, abundant wastes from the palm oil refining process have been generated which are hard to handle. Spent Bleaching Earth (SBE) is the solid waste from this process and leads the cost of elimination to the company. This study aims to utilize the SBE as the alternative material in the non-fired wall tiles. The main raw materials used in non-fired wall tiles consist of laterite soil, fluvial sand, and Portland cement. The experimental formulas have been conducted and divided into 3 groups by varying the percentage of the SBE in main raw materials. The specimens of material mixture have been produced by uniaxial pressing at 100 bars, dimensions in $50{\times}100{\times}8mm$. These specimens are sprayed with water and cured in the air for 7 days. After that, bending strength and water absorption test of these specimens has been performed. It can be concluded that the best formula with the percentage of laterite soil, fluvial sand, Portland cement, and SBE are 60.94%, 13.125%, 22.5%, and 3.435%, respectively. Its bending strength and %water absorption are 0.68 MPa and 5.64%. Material costs of specimen are approximately $0.00276 USD/100g. Furthermore, the comparison of curing period between 7 days and 30 days has been performed. The 30 days of curing period can improve the bending strength of the specimen, but there is no effect on water absorption.