• Title/Summary/Keyword: Sand bottom

Search Result 331, Processing Time 0.025 seconds

Sandy Sediment Transport Mechanism on Tidal Sand Bodies, West Coast of Korea (해양(조수환경) 사립퇴적물의 이동기작에 관한 연구 - 한국 서해 만경강.동진강 하구 해역 -)

  • Yong Ahn Park;Hyo Jin Kang;Y.I. Song
    • The Korean Journal of Quaternary Research
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 1991
  • Sand bars associated with strong tidal currents are well developed in the subtidal zone near the Kokunsan islands. Tidal currents measured at sand bar in the area show an asymmetry in magnitude between flood and ebb currents. At the southern flank of the sand bar the currents are flood-dominant whereas the currents are ebb-dominant at the northern flank. The asymmetry is more distinctive as the currents become stronger during spring tide. Moreover, the flood-dominance along the southern flank is stronger than the ebb-dominance along the northern flank. Thus the flood current is more affective to the sand bar. The sandy bottom sediment is mostly transported as bedload by the tidal currents. The magnitude asymmetry of the tidal currents results in a net sediment movement in one direction. The direction is onshore in the south and offshore in the north, which may result in a net counterlookwise rotation of the sands around the sand bar. However, the sand bar may migrate towards onshore due to the more affective flood current in the south. The irregular V-shaped outline of the sand bar in the south also seem to reflect the strong effect of flood current.

  • PDF

Evaluation of Sand Replacement Method for Determination of Soil Density (모래 치환법을 이용한 흙의 밀도 시험에 관한 평가)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.47-52
    • /
    • 2009
  • A sand replacement method is commonly used to determine the density of the compacted soils. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to deposit approximately in the same way as a test hole in the field. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. Three sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field. As the height of a test hole increases, the error between known density and calculated density decreases, regardless of the types of test hole and sand used. The results of this study can be used to reevaluate and revise the test method for soil density by the sand replacement method.

Understanding the creep behavior of bentonite-sand mixtures as buffer materials in a low-level radioactive waste repository in Taiwan

  • Guo-Liang Ren;Wei-Hsing Huang;Hsin-Kai Chou;Chih-Chung Chung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3884-3897
    • /
    • 2024
  • This study investigates the creep behavior of bentonite-sand mixtures as potential buffer materials for low-level radioactive waste (LLW) repositories, with a specific case study in Taiwan. To assess the long-term hydro-mechanical properties, constant-volume swelling pressure, hydraulic conductivity, strain-controlled shear, and stress-controlled shear tests were conducted on MX80 and KV1 bentonite-sand mixtures. The experimental results indicate that MX80-sand 70/30 mixtures are prioritized as the buffer materials with 2.10 MPa swelling pressure and 1 × 10-13 m/s hydraulic conductivity. However, the shear strength of mixtures was reduced by almost 50 % when fully saturated. Furthermore, this study proposed a novel stress-controlled direct shear apparatus to retrieve the creep model parameters. The numerical method based on the creep model efficiently supports and simulates the saturation process and creep displacement. The finite element method (FEM) result predicts that the buffer of both bentonite-sand mixtures will achieve an average degree of saturation of 95 % at the end of three decades and full saturation in 100 years. The simulated creep displacement results at key nodes suggest that both top and bottom parts in the buffer, assembled from MX80-sand 70/30 mixtures or KV1-sand 70/30 mixtures, will have almost equivalent values of 4 mm in the horizontal and 2 mm in the vertical directions eventually.

The Change of Beach Processes at the Coastal Zone with the Impact of Tide (조석(潮汐)의 영향(影響)이 있는 연안(沿岸)해역(海域)에서의 해안과정(海岸過程)의 변화(變化))

  • Kim, Sang-Ho;Lee, Joong-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.257-262
    • /
    • 2002
  • Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered from accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the case of a narrow tidal range at Nakdong river's estuary area to understand the effect of water level variation on the littoral drift. Simulations are conducted in terms of incident wave direction and tidal level. Characteristics of wave transformation, nearshore current, sediment transport, and bottom change are shown and analyzed. We found from the simulation that the tidal level impact to the sediment transport is very important and we should apply the numerical model with different water level to analyze sediment transport mechanism correctly. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF

Settlement Characteristics of Three Type of Artificial Reefs on Sandy Bottom in the Eastern Coast of Korea (동해안 사질지반에 시설된 인공어초 3종의 매몰 특성)

  • Kim, Dae-Kweon;Kim, Wan-Ki;Son, Yong-Soo;Yoon, Jang-Tack;Gong, Yong-Gun;Kim, Young-Dae;Lee, Ji-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.359-364
    • /
    • 2008
  • Using multi beam echo sounder, side scan sonar and scuba diving equipment, ceramic type, uneven type and semicircle-ramus type reefs into sandy bottom were ascertained, the depth of submersion in 7.2-10.3m on the coast of Gangneung, East of Korea, forty uneven type artificial reefs(AR) were totally buried into the sandy bottom. Two of five semicircle-ramus type ARs had only of their top area exposed. For most of the 45 ceramic reefs, only the upper 25-150cm of ARs were visible. The burial pattern is different in west and east side of the reefs, where the east side is deeply buried compared to the west side. From these results. it is recommended that sufficient analysis of bottom structure and materials especially in the sandy sea area should be undertaken in order to determine the best type of artificial reefs to be deployed and the best location for depoloyment.

Engineering Characteristics of CLSM Using Bottom Ash and Eco-friendly Soil Binder (친환경 고결제와 저회를 활용한 유동성 복토재의 공학적특성)

  • Park, Giho;Kim, Taeyeon;Lee, Yongsoo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • In general, pipe laying works are performed by constructing underground facilities such as pipes and then refilling the rest of the area with sand or soil. However, there are many problems in the compaction process such as difficulties in tampering around the underground facility and low compaction efficiency. Such problems cause deformation and damage to the underground pipes during refilling work and ultimately cause road sinks. Construction methods using CLSM are one of the typical methods to solve these issues, and recently, studies on CLSM using coal ash, which has similar engineering properties as sand, have been actively performed to protect environment and recycle resources. While many studies have been conducted to recycle fly ash in many ways, the demand for recycling bottom ash is increasing as most of the bottom ash is not recycled and reclaimed at ash disposal sites. Therefore, in order to find bottom ash applications using eco-friendly soil binders that are environmentally beneficial and conform with CLSM standards, this study investigated flow characteristics and strength change characteristics of eco-friendly soil binders, weathered granite soil, a typical site-generated soil, bottom ash, and fly ash mixed soil and evaluated the soil pollution to present CLSM application methods using bottom ash.

Meiobenthos in Nha Trang Bay of the South China Sea (Vietnam)

  • Pavlyuk, Olga N.;Trebukhova, Julia A.
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.139-148
    • /
    • 2006
  • The distribution of the taxonomical composition and the density of meiobenthos depending on the sediment type has been studied in bottom sediments of Nha Trang Bay. The maximal population density and the taxonomical diversity were observed in the silted coarse and heterogeneous sand ($1031.4{\pm}419.7\;ind.\;10\;cm^{-2}$), whereas the minimal level of density and diversity ($588.1{\pm}152.5\;ind.\;10cm^{-2}$) was in the coarse and heterogeneous sand with shell debris and corals. The correlation between the median diameter of sediment particles and population density of meiobenthos has been revealed (r=0.82, p<0.05). In bottom sediments of Nha Trang Bay, twenty six taxonomic groups of meiobenthos were observed. Nematodes dominated in all sediment types. Representatives of four orders, twenty eight families and ninety seven genera of marine nematodes were identified. The vertical distribution of meiobenthos in different sediment types was considered. A sediment column (10 cm height) was sectioned by five 2 cm portions. In the last layer (8-10 cm) the most number of meiobenthic groups was found in sandy sediments. In the lower layers of silt sediments, only nematodes were found.

Development of Sedimentary Sequence in the Masan Bay, South Sea of Korea (마산만 퇴적층서 발달 특성)

  • Choi, Dong-Lim;Lee, Tae-Hee
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.411-418
    • /
    • 2007
  • We studied the bottom morphology and sedimentary environments of the Masan Bay using high-resolution Chirp seismic profiles and sediments data. According to deep-drilled core samples (up to 20 m thick) penetrated into the weathered rock basement, the sediments consist largely of three sediment types: the lower sandy gravel facies (Unit I) of 1-4 m in thickness, the middle sandy mud and/or muddy sand facies(Unit II) of 1-2 m thick and the upper mudfacies (Unit III) of over 10 m in thickness. The sedimentary column above the acoustic basement can be divided into two major sequences by a relatively strong mid-reflector, which show the lower sedimentary sequenc e(T) with parallel to subparallel internal reflectors and the upper sedimentary sequence(H) with free acoustic patterns. Acoustic basement, the lower sedimentary sequence (T), and the upper sequence (H) are well correlated with poorly sorted massive sandy gravels (Unit I), the sand/mud-mixed sediment (Unit II), and the muddy facies(Unit III), respectively. The acoustic facies and sediment data suggest that the Masan bay is one of the most typical semi-enclosed coastal embayments developed during the Holocene sea-level changes. The area of the Masan Bay reduced from about $19\;km^2$ in 1964 to about $13\;km^2$ in 2005 by reclamation, and its bottom morphology changed as a result of dredging of about $2{\times}10^7\;m^3$.

Removal of As(III) by Pilot-Scale Filtration System Separately Packed with Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사를 분리 충진시킨 파일럿 여과시스템에 의한 3가 비소 제거)

  • Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.878-883
    • /
    • 2006
  • Removal efficiency of As(III) was investigated with a pilot-scale filtration system packed with an equal amount(each 21.5 kg) of manganese-coated sand(MCS) in the bottom and iron-coated sand(ICS) in the top. Height and diameter of the used column was 200 cm and 15 cm, respectively. The As(III) solution was introduced into the bottom of the filtration system with a peristaltic pump at a speed of $5{\times}10^{-3}$ cm/s over 148 days. Breakthrough of total arsenic in the mid-sampling position(end of the MCS bed) and final-sampling position(end of the ICS bed) was started after 18 and 44 days, respectively, and then showed a complete breakthrough after 148 days. Although the breakthrough of total arsenic in the mid-sampling position was started after 18 days, the concentration of As(III) in this effluent was below 50 ppb up to 61 days. This result indicates that MCS has a sufficient oxidizing capacity to As(III) and can oxidize 92 mg of As(III) with 1 kg of MCS up to 61 days. When a complete breakthrough of total arsenic occurred, the removed total arsenic by MCS was calculated as 79.0 mg with 1 kg MCS. As variation of head loss is small at each sampling position over the entire reaction time, it was possible to operate the filtration system with ICS and MCS for a long time without a significant head loss.

A Study on the Process Selection for Two-stage and Dual Media Filtration System for Improving Filtration Performance (여과 성능향상을 위한 이단이층 복합여과시스템의 공정선정 연구)

  • Song, Si Bum;Jo, Min;Nam, Sang Ho;Woo, Dal Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.203-214
    • /
    • 2007
  • This study aimed at researching the process selection for two-stage and dual media filtration system, as a technology substituting the existing sand filter without expanding the site when retrofitting an old filter bed or designing a new one. In order to select the process for optimum complex filtration system, three running conditions have been tested. Test results demonstrated that Run 3 in which the 1st stage was filled with anthracite and coarse sand, and the 2nd stage was filled up with activated carbon and fine sand reduced the head loss and the load of turbidity substances. Also, Run 3 showed better performance in removing TOC, particle counts, THMFP and HAAFP, compared to other two conditions. 99 % of Cryptosporidium was removed. Bisphenol-A was rarely removed from the 1st stage of coarse sand and 2nd stage of fine sand, but 99 % of it was removed from the 2nd stage of activated carbon. In conclusion, when it is required to retrofit an old rapid filter bed or design a new one for the purpose of improving filtration performance, the following two-stage and dual media filtration system is suggested: the 1st stage of filter bed needs to be filled up with coarse sand to remove turbidity as the pretreatment for extending duration of filtering, the top part of 2nd stage needs to be filled up with granular activated caron to remove dissolved organic matters and others as the main process, and finally the bottom part of 2nd stage needs to be filled up with fine sand as the finishing process.