• Title/Summary/Keyword: Sand bottom

Search Result 331, Processing Time 0.03 seconds

Vertical Load Transfer Mechanism of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 수직 하중전이 특성)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Jang, Hwa-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.29-39
    • /
    • 2015
  • The vertical load imposed on the bucket foundation is transferred from the soil inside the bucket to the bottom of the foundation, and also to the outer surface of the skirt. For the design of a bucket foundation installed in sand, the vertical load transfer characteristics have to be clearly identified. However, the response of bucket foundations in sand subjected to a vertical load has not been investigated. In this study, we performed two-dimensional axisymmetric finite element analyses and investigated the vertical load transfer mechanism of bucket foundation installed in sand. The end bearing capacity of bucket foundation is shown to be larger than that of the shallow foundation, whereas the frictional resistance is smaller than that for a pile. The end bearing capacity of the bucket foundation is larger than the shallow foundation because the shear stress acting on the skirt pushes down and enlarges the failure surface. The skin friction is smaller than the pile because the settlement induces horizontal movement of the soil below the tip of the foundation and reduces the normal stress acting at the bottom part of the skirt. The calculated bearing capacity of the bucket foundation is larger than the sum of end bearing capacity of shallow foundation and skin friction of pile. This is because the increment of the end bearing capacity is larger than the reduction in the skin friction.

Potential of River Bottom and Bank Erosion for River Restoration after Dam Slit in the Mountain Stream

  • Kang, Ji-Hyun;So, Kazama
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.46-46
    • /
    • 2011
  • Severe sediment erosion during floods occur disaster and economic losses, but general sediment erosion is basic mechanism to move sediment from upstream to downstream river. In addition, it is important process to change river form. Check dam, which is constructed in mountain stream, play a vital role such as control of sudden debris flow, but it has negative aspects to river ecosystem. Now a day, check dam of open type is an alternative plan to recover river biological diversity and ecosystem through sediment transport while maintaining the function of disaster control. The purpose of this paper is to verify sediment erosion progress of river bottom and bank as first step for river restoration after dam slit by cross-sectional shear stress and critical shear stress. Study area is upstream reach of slit check dam in mountain stream, named Wasada, in Japan. The check dam was slit with two passages in August, 2010. The transects were surveyed for four upstream cross-sections, 7.4 m, 34 m, 86 m, and 150 m distance from dam in October 2010. Sediment size was surveyed at river bottom and bank. Sediment of cobble size was found at the wetted bottom, and small size particles of sand to medium gravel composed river bank. Discharge was $2.5\;m^3/s$ and bottom slope was 0.027 m/m. Excess shear stress (${\tau}_{ex}$) was calculated for hydraulic erosion by subtracting the values of critical shear stress (${\tau}_{c}$) from the value of shear stress (${\tau}$) at river bottom and bank (${\tau}_{ex}=\tau-{\tau}_c$). Shear stress of river bottom (${\tau}_{bottom}$) was calculated using the cross-sectional shear stress, and bank shear stress (${\tau}_{bank}$) was calculated from the method of Flintham and Carling (1988). $${\tau}_{bank}={\tau}^*SF_{bank}((B+P_{bed})/(2^*P_{bank}))$$ where $SF_{bank}=1.77(P_{bed}/p_{bank}+1.5)^{-1.4}$, B is the water surface width, $P_{bed}$ and $P_{bank}$ are wetted parameter of the bed and bank. Estimated values for ${\tau}_{bottom}$ for a flow of $2.5\;m^3/s$ were lower as 25.0 (7.5 m cross-section), 25.7 (34 m), 21.3 (86 m) and 19.8 (150 m), in N/$m^2$, than critical shear stress (${\tau}_c=62.1\;N/m^2$) with cobble of 64 mm. The values were insufficient to erode cobble sediment. In contrast, even if the values of ${\tau}_{bank}$ were lower than the values for ${\tau}_{bottom}$ as 18.7 (7.5 m), 19.3 (34 m), 16.1 (86 m) and 14.7 (150 m), in N/$m^2$, excess shear stresses were calculated at the three cross-sections of 7.5 m, 34 m, and 86 m distances compare with ${\tau}_c$ is 15.5 N/$m^2$ of 16mm gravel. Bank shear stresses were sufficient for erosion of the medium gravel to sand. Therefore there is potential to erode lateral bank than downward erosion in a flow of $2.5\;m^3/s$. Undercutting of the wetted bank can causes bank scour or collapse, therefore this channel has potential to become wider at the same time. This research is about a potential of sediment erosion, and the result could not verify with real data. Therefore it need next step for verification. In addition an erosion mechanism for river restoration is not simple because discharge distribution is variable by snow-melting or rainy season, and a function for disaster control will recover by big precipitation event. Therefore it needs to consider the relationship between continuous discharge change and sediment erosion.

  • PDF

Diel and Tidal Distributions of the Sand-burrowing Mysids Archaeomysis kokuboi and Acanthomysis nakazatoi on a Sandy Shore Surf Zone of Yongil Bay, Eastern Korea, in Relation to Growth Stages (동해 영일만 쇄파대에 서식하는 곤쟁이 Archaeomysis kokuboi와 Acanthomysis nakazatoi의 성장단계에 따른 주야 및 조석간 분포)

  • Jo, Soo-Gun;Kim, Chung-A;Suh, Hae-Lip
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.112-119
    • /
    • 2012
  • This study investigated the diel and tidal distributions of the two mysids, Archaeomysis kokuboi and Acanthomysis nakazatoi, in relation to their growth stages in the sandy surf zone of Yongil Bay, located on the southeastern part of Korean Peninsula. Sampling was conducted with a sledge net at every two hours for almost 24 hours at three sites: water edge, water surface and sand bottom both in 1-m deep water areas. The abundance of Archaeomysis kokuboi juveniles was too low to count both in day and night samples. While there was no difference in immature A. kokuboi abundance between day and night in the bottom or water edge, that at the water surface was significantly higher at night than daytime. The abundance of A. kokuboi adults, especially of males, in the bottom was significantly higher in daytime than night and no individuals appeared to the water surface either day or night. In comparison, the abundance of Acanthomysis nakazatoi juveniles between day and night did not differ significantly at all the three sites, with the highest number being distributed in the bottom. The abundance of immatures between day and night also did not differ significantly and no individuals appeared to the water surface either day or night. The abundance of A. nakazatoi adults, especially females, in the bottom was significantly higher at night than daytime and there was no significant difference in abundance between day and night in the other sites. There was also no significant difference in abundances of the two species between ebb and flood tides, except for A. kokuboi immatures which appeared significantly more during the ebb tides at the water surface. Overall, the distribution of the two sympatric species, A. kokuboi and A. nakazatoi, was not the same in the sandy surf zone. Its difference seems to depend on their stages of growth, and the change in their abundance may be influenced more by diurnal rhythms than tidal effects. The population density of A. nakazatoi in the sandy surf zone was much higher than that of A. kokuboi, and relatively higher densities in all growth stages of the former were found in the sandy bottom ranging from juveniles to adults. These results indicate that A. nakazatoi has exceedingly better ability of sand burrowing even from the juvenile stage, and thus is an ecologically better adapted species in the sandy surf zone than another sympatric species, A. kokuboi.

An Ecological Study on the Sand Dollar, Astriclypeus manni (VERRIL 1867), in Hamdock, Cheju Korea (제주도 함덕 연안에 서식하는 구멍연잎성게, Astriclypeus manni (VERRIL 1867)의 생태학적 특성에 관한 연구)

  • KANG DO-Hyung;CHOI Kwang-Sik;CHUNG Sang-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.345-352
    • /
    • 1999
  • The sand dollar, Astriclypeus manni is commonly encountered on a subtidal sand bottom along the coast of Cheju Island. limited information has been reported on their ecology despite their natural abundance. This study reports ecology and an annual reproductive cycle of the sand dollars present at Hamdock, northern coast of Cheju Island. A. manni collected from Hamdock revealed that they are 80 to 200 mm in test diameter. Sediment Brain size analysis indicated that A. manni mostly occurs on medium (particle diameter of 500 $\mu$m) to very find sand (particle diameter of 125 $\mu$m), particularly on fine sand (particle diameter of 250 $\mu$m). Internal morphology and in situ observations on their feeding habit indicated that A. manni is a deposit feeder, feeding on organic debris contained in the sediment around its habitat. A. manni were more frequently observed near Zostrea marina bed where content of organic matter in the sediment is considered to be higher. Gonadal tissues of the male were yellow in color while female gonads appeared to be purple. Fully mature eggs, with a mean diameter of 381 $\mu$m, and sperm were observed from the histological slides of the sand dollars collected in late July to August, suggesting that A. manni spawn during July to August when water temperature reaches 20 to $25^{\circ}C$.

  • PDF

An Experimental Study on the Compressive Strength Properties of Sulfur-solidified Materials using Bottom Ash Fine Aggregate (바닥재 잔골재를 활용한 유황고형화 성형물의 압축강도 특성에 대한 실험적 연구)

  • Hong, Bumui;Choi, Changsik;Yun, Jungho;Eom, Minseop;Jeon, Sinsung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • Differently from fly ash, the bottom ash produced from thermal power generation has been treated as an industrial waste matter, and almost reclaimed or was applied with the additive of the part concrete. Bottom ash has various problems to use with the aggregate. Bottom ash is lighter than typically the sand or the gravel and it's physical properties (compressive strength etc.) is somewhat low because of high absorptance. In order to manufacture the ash concrete, we used a bottom ash as a main material and a pure sulfur as a binder. In this study, fundamental research methods that vary the grain-size of bottom ash and the ratio of sulfur vs ash were investigated to improve the quality of ash concrete such as compressive strength. Bottom ash in this research which occurs from domestic 4 place power plants, was checked physical and chemical properties. The compressive strength seems the result which simultaneously undergoes an influence in content of the sulfur and Bottom ash grain-size. We got the result of the maximum 92 MPa. The compressive strength was high result for grain size below 1.2 mm and high sulfur content.

Numerical Analysis of the Suction Pile Behavior with Different Lateral Loading Locations (수치해석을 통한 횡하중 위치에 따른 석션기초의 거동 분석)

  • Lee, Ju-Hyung;Kim, Dong-Wook;Chung, Moon-Kyung;Kwak, Ki-Seok;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.67-76
    • /
    • 2011
  • Numerical analyses were performed to analyze the behavior of a suction pile under lateral loads with different soil layer conditions (uniform clay layer, uniform sand layer, and multi layers consisting of clay and sand layers) and different loading locations (top, middle, and bottom of the suction pile). The results of the analyses revealed that, regardless of the soil layer conditions, the lateral resistances at the loading location of the middle of the suction pile were the maximum. For the given loading locations, the lateral resistances of the suction pile for the uniform sand layer were relatively higher than those for the multi layer. By analyzing translations and rotations of the suction pile, it was identified that the amount of translation was highly dependent on both the soil layer condition and the lateral loading location while the rotated angle varied significantly with the lateral loading location, but not much with soil layer condition.

Removal of Nitrate and Particulate from Groundwater with Two stage Biofilter system (2단 생물막여과 탈질시스템에서 지하수의 질산성질소 및 입자제거특성)

  • Lee, Moo-Jae;Park, Sang-Min;Jun, Hang-Bae;Kim, Kong-Soo;Lim, Jeoung-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.669-675
    • /
    • 2005
  • Biological nitrate removal from groundwater was investigated in the biofilters packed with both gravel/sand and plastic media. Removal of particles and turbidity were also investigated in the 2-stage biofilter system consisted of biofilter and subsequent sand filter. In the single biofilter packed with gravel and sand, nitrate removal efficiency was dropped with the increase of filtration velocity and furthermore, nitrite concentration increased up to 3.2 mg-N/L at 60 m/day. Denitrification rate at the bottom layer below 25 cm was faster 8 times than upper layer in the up-flow biofilter. Nitrite build-up, due to the deficiency of organic electron donors, occurred at the upper layer of bed. Besides DO concentration and organic carbon, contact time in media was the main factor for nitrate removal in a biofilter. The most of the effluent particles from biofilter was in the range from 0.5 to $2.0{\mu}m$, which resulted in high turbidity of 1.8 NTU. However, sand filter followed by biofilter efficiently performed the removal of particles and turbidity, which could reduce the turbidity of final filtrate below 0.5 NTU. Influent nitrate was removed completely in the 2-stage biofilter and no nitrite was detected.

Effects of Sand Supply and Artificial Floods on Periphyton in the Downstream of a Dam (Yangyang Dam, Korea) (모래 공급과 인공 홍수가 양양댐 하류하천의 부착조류에 미치는 영향)

  • Park, Misook;Lee, Jaeyong;Jung, Sungmin;Park, Chang-Keun;Chang, Kun;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.418-425
    • /
    • 2012
  • Dam construction in a river can change its hydrological pattern and trap sediments, which results in ecological changes in the downstream. It is a common phenomenon in the downstream of dams to have decreased sediment flow and increased periphyton. Artificial floods and sediment application are suggested as mitigation practices in order to simulate natural process of flood; transporting sediment and sloughing periphyton off. In this study the effects of artificial floods on periphyton were examined by applying sand artificially and discharging water from a dam (Yangyang Dam, Korea). The study area has been suffering from turbidity problems caused by shore erosion of the dam. The accumulation of inorganic sediments and increase of periphyton on the river bottom are the major factors of habitat deterioration in the downstream reaches. Artificial flood and artificial addition of sand was performed in summer and the effects were measured. Piles of applied sands were washed off easily by discharge and it enhanced the periphyton sloughing effect. The removal efficiency of periphyton was 50 ~ 80% within the 2 km reach from the dam. In conclusion artificial floods and sand application can be a good mitigation measure for the habitat rehabilitation after a dam construction in streams.

Vertically Development Processes of Jangho-ri Coastal Dune, West Coast of Korea (고창 장호리 해안사구의 수직 발달 과정 연구)

  • Han, Min;Kim, Jin Cheul;Yang, Dong-Yoon;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.79-92
    • /
    • 2016
  • Samples from two boreholes of coastal dune field at Jangho-ri coast, Gochang was studied. These were analyzed by grain size analysis geochemical analysis, and the application of OSL dating method to understand the development during the Holocene. The boreholes SB8 and SB9 were classified into three different sedimentary layers by their mean grain size and geochemical characteristics. The results revealed that the upper sand layer is equivalent to the present coastal dune layer, which developed since 1,200 years ago; the silt layer in the middle to the dune slack or lagoon sedimentation layer, which developed between 1,200 and 6,000 years ago; and the sand layer at the bottom to the paleo coastal dune that developed between 6,000 and 7,000 years ago. It was proposed that the forming material of current coastal dune was supplied from the sandy flat in coastal area, while the middle silt layer was supplied from the weathered soil of a bed rock by the comparison with material of surrounding area. In the case of coastal dune, concentrated layer of sands were identified which were buried about 300 and 1,200 years ago, which is identified as the little ice age. This study confirmed the development of Jangho-ri coastal dunes after Holocene Climate Optimum period, and it is likely to assist in the understanding of coastal dunes development.

Backscatter Data Processing of Multibeam Echo-sounder (300 kHz) Considering the Actual Bottom Slope (지형 경사를 고려한 다중빔 음향측심기(300 kHz) 후방산란 자료 처리에 관한 연구)

  • Kim, Tae-Heon;Lee, Jeong-Min;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.379-390
    • /
    • 2015
  • Multibeam backscatter strength is dependent not only on seafloor sediment facies but also on changed incidence angle due to the actual bottom slope. Therefore, the correction for actual bottom slope should be considered before the analysis of backscatter strength. This paper demonstrates the backscatter correction technique for the actual incidence angle and ensonified area. The target area is a part of the eastern Yellow Sea with water depths of 46~55 m. The area is located between the sand ridges and covered by large dunes with various bottom slopes. The dunes usually have the gentle slopes of about $1{\sim}3^{\circ}$, but show some steep slopes of $5{\sim}15^{\circ}$ on the crest. The backscatter strength values on the crest range from -34 to -23 dB, assuming that the bottom is flat. However, this study shows that the backscatter strength range was somewhat reduced (-32~-25 dB) after correction for actual bottom slope. In addition, the backscatter imagery was significantly improved; high and low backscatter strength values on the crest due to the actual bottom slope were normalized. The results demonstrate that the correction technique in this study is an effective tool for processing backscatter strength.