DOI QR코드

DOI QR Code

Backscatter Data Processing of Multibeam Echo-sounder (300 kHz) Considering the Actual Bottom Slope

지형 경사를 고려한 다중빔 음향측심기(300 kHz) 후방산란 자료 처리에 관한 연구

  • Kim, Tae-Heon (Department of Oceanography and Ocean Environmental Sciences, Chungnam National University) ;
  • Lee, Jeong-Min (Korea Seabed Information (KOSBI) Corporation) ;
  • Park, Soo-Chul (Department of Oceanography and Ocean Environmental Sciences, Chungnam National University)
  • Received : 2015.09.22
  • Accepted : 2015.10.29
  • Published : 2015.10.28

Abstract

Multibeam backscatter strength is dependent not only on seafloor sediment facies but also on changed incidence angle due to the actual bottom slope. Therefore, the correction for actual bottom slope should be considered before the analysis of backscatter strength. This paper demonstrates the backscatter correction technique for the actual incidence angle and ensonified area. The target area is a part of the eastern Yellow Sea with water depths of 46~55 m. The area is located between the sand ridges and covered by large dunes with various bottom slopes. The dunes usually have the gentle slopes of about $1{\sim}3^{\circ}$, but show some steep slopes of $5{\sim}15^{\circ}$ on the crest. The backscatter strength values on the crest range from -34 to -23 dB, assuming that the bottom is flat. However, this study shows that the backscatter strength range was somewhat reduced (-32~-25 dB) after correction for actual bottom slope. In addition, the backscatter imagery was significantly improved; high and low backscatter strength values on the crest due to the actual bottom slope were normalized. The results demonstrate that the correction technique in this study is an effective tool for processing backscatter strength.

다중빔 음향 측심기의 후방산란 음압은 해저면 퇴적상뿐만 아니라 지형 경사로 인해 변화된 음파의 실제 입사각에 의해서도 강도가 달라지므로 후방산란 음압 분석에 앞서, 지형 경사를 고려한 정밀한 자료처리가 필요하다. 본 논문은 지형 경사에 따른 실제 입사각 및 입사면적에 대한 후방산란 자료처리 방법과 경사 지형에서의 후방산란 특징에 대해 기술하였다. 황해 동부의 사퇴분포 해역에 위치한 연구지역은 수심이 46~55 m의 범위를 보이며, 다양한 지형 경사를 가지는 대규모 dune들이 발달되어 있다. 대규모 dune들의 경사는 대부분 $1{\sim}3^{\circ}$ 내외로 완만하지만 등성이에서는 경사가 $5{\sim}15^{\circ}$로 가파른 특징을 보인다. 후방산란 자료처리 결과, 지형 경사를 고려하지 않은 경우에는 등성이에서 음압이 -34~-23 dB의 범위를 보인다. 반면, 본 연구 방법으로 지형 경사를 고려한 경우에는 같은 지역에서 음압이 -32~-25 dB 범위로써 음압 변동 폭이 완화되는 효과를 보였다. 또한, 후방산란 영상에서도 등성이에서 나타나는 강하고 약한 이상 음압 분포가 개선되어, 본 연구의 후방산란 자료처리 방법이 지형 경사로 인한 음압 변화를 효과적으로 보정하는 것으로 확인되었다.

Keywords

References

  1. Amiri-Simkooei, A., Snellen, M. and Simons, D.G. (2009) Riverbed sediment classification using multi-beam echo-sounder backscatter data, J. Acoust. Soc. Am., v.126, p.1724-1738. https://doi.org/10.1121/1.3205397
  2. APL-UW (1994) High frequency ocean environmental acoustic models handbook (APL-UW TR 9407), Seattle, WA: Applied physics laboratory, University of washington.
  3. Blondel, P. and Murton, B.J. (1997) Handbook of seafloor sonar imagery, Praxis-Wiley and Sons, West Sussex, England, p.314.
  4. Byun, H.S., Chung, C.H., Park, S.O., Lee, B.S., Kwon, Y.I., Choi, E.J., Park, M.H. and Yi, S.H. (2013) Review on paleoenvironments of the Kunsan Basin (northern South Yellow Sea Basin) based on palynofloral assemblage, Journal of the Geological Society of Korea, v.49, no.1, p.145-163.
  5. Caress, D.W. and Chayes, D.N. (2015) MB-System Version 5, Open source software distributed from the MBARI and L-DEO web sites.
  6. CARIS (2015) CARIS HIPS and SIPS 9.0.17 User guide, August.
  7. Choi, B.H. and Fang, G. (1993) A review of tidal models for the East china and Yellow Seas, Korean Society of Coastal and Ocean Engineers, Journal, v.5, p.151-171.
  8. Cutter, G.R.Jr., Rzhanov, Y. and Mayer, L.A. (2003) Automated segmentation of seafloor bathymetry from multibeam echosounder data using local Fourier histogram textures features, J. Experim. Mar. Bio. Ecol., v.285-286, p.355-370. https://doi.org/10.1016/S0022-0981(02)00537-3
  9. Diaz, J.V.M. (1999) Analysis of multibeam sonar data for the characterization of seafloor habitat, M.Eng. thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, NB, Canada.
  10. Dufek, T. (2012) Backscatter Analysis of Multibeam Sonar Data in the Area of the Valdivia Fracture Zone using Geocoder in CARIS HIPS&SIPS and IVS3D Fledermaus, M.Sc.Eng. thesis, HafenCity Universitat Hamburg Department Geomatik.
  11. Fang, G.H. (1994) Tides and tidal currents in East China Sea, Huanghai Sea and Bohai Sea, Oceanology of China Seas, v.1, p.17-26.
  12. Fernandes, W.A. and Chakraborty, B. (2009) Multi-beam backscatter image data processing techniques employed to EM 1002 system, Proceedings of the International Symposium on Ocean Electronics (SYMPOL-2009), 18-20 Novemver, Cochin University of Science and Technology, p.93-99.
  13. Ferrini, V.L. and Flood, R.D. (2006) The effects of finescale surface roughness and grain size on 300 kHz multibeam backscatter intensity in sandy marine sedimentary environments, Marine Geology, v.228, p.153-172. https://doi.org/10.1016/j.margeo.2005.11.010
  14. Gardner, J.V., Field, M.E. and Lee, H. (1991) Groundtruthing 6.5 kHz side scan sonographs: what are we really imaging? J. of Geophysics Research, v.96, p.5955-5974. https://doi.org/10.1029/90JB02730
  15. Hammerstad, E. (2000) Backscattering and seabed image reflectivity, Collected paper from Kongsberg, EM Technical Note.
  16. Hughes Clarke, J.E., Danforth, B.W. and Valentine, P. (1997) Areal seabed classification using backscatter angular response at 95kHz, Proceedings of the NATO SACLANT Conference CP-45, Lerici, Italy, 30 June-04 July, 1997.
  17. Jackson, D.R., Baird, A.M., Crisp, J.J. and Thomson, P.A.G. (1986) High-frequency bottom backscatter measurements in shallow water, J. of Acoust. Soc. Am., v.80 p.1188-1199. https://doi.org/10.1121/1.393809
  18. Jackson, D.R. and Briggs, K.B. (1992) High-frequency bottom backscattering: Roughness versus sediment volume scattering, J. of Acoustical Society of America, v.92(2), p.962-977. https://doi.org/10.1121/1.403966
  19. Jung, W.Y., Suk, B.C., Min, G.H. and Lee, Y.K. (1998) Sedimentary structure and origin of a mud-cored pseudo-tidal sand ridge, eastern Yellow Sea, Korea. Marine Geology, v.151, p.73-88. https://doi.org/10.1016/S0025-3227(98)00058-9
  20. KIGAM (1996) Yellow Sea drilling program for studies on Quaternary geology, KIGAM Research Report KR- 96(T)-18, p.595.
  21. Kim, G.Y., Kim, D.C., Kim, S.J., Seo, Y.K., Jung, J.H. and Kim, Y.E. (2000) Physical properties of Southeastern Yellow Sea Mud (SEYSM): Comparison with the East Sea and the South Sea mudbelts of Korea, Journal of the Korea Society of Oceanography, v.5, No.4, p.335-345.
  22. Kong, G.S., Kim, S.P., Park, Y.S., Min, G.H., Kim, J.U. and Park, S.C. (2006) Correlation of Simrad EM950 (95 kHz) Multibeam Backscatter Strength with Surficial Sediment Properties in the Sand Ridge of the Eastern Yellow Sea, Econ. Environ. Geol., v.39, p.719-738.
  23. KORDI (1982) Marine geology of Asan Bay, Korea, KORDI Research Report BSPE 00041-63-5, p.186.
  24. Llewellyn, K. (2006) Corrections for beam pattern residuals in basckscatter imagery from the Kongsberg-Simrad EM300 multibeam echosounder, M.Eng. thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, NB, Canada.
  25. Lurton, X. and Lamarche, G. (2015) Backscatter measurements by seafloor-mapping sonars, Marine geological and biological habitat mapping.
  26. Mitchell, N.C. (1993) A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar, J. of Geophysics Research, v.98(B12).
  27. Oliveira, A.M.Jr. (2007) Maximizing the coverage and utility of multibeam backscatter for seafloor classification, M.Sc.Eng. thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, NB, Canada.
  28. Parnum, I.M. and Gavrilov, A.N. (2011) High-frequency multibeam echo-sounder measurements of seafloor backscatter in shallow water: Part 2 - Mosaic production, analysis and classification, International Journal of the Society for Underwater Technology, v.30, p.13-26. https://doi.org/10.3723/ut.30.013
  29. Park, S.C., Lee, B.H., Han, H.S., Yoo, D.G. and Lee, C.W. (2006) Late Quaternary stratigraphy and development of tidal sand ridges in the eastern Yellow Sea. J. of Sedimentary Research, v.18, p.689-705.
  30. Park, Y.S., Lee, S.J., Seo, W.J., Gong, G.S., Han, H.S. and Park, S.C. (2008) Surficial Sediment Classification using Backscattered Amplitude Imagery of Multibeam Echo Sounder(300 kHz), Econ. Environ. Geol., v.41, p.747-761.
  31. Simrad (2006) EM3002 Multibeam echo sounder, Collected paper from Kongsberg, Data sheet.
  32. Siwabessy, P.J.W., Gavrilow, A.N., Duncan, A.J. and Parnum, I.M. (2006) Statistical analysis of high-frequency multibeam backscatter data in shallow water, Proceedings of ACOUSTICS 2006, 20-22 November 2006, Christchurch, New Zealand.
  33. Urgeles, R., Locat, J., Schmitt, T. and Hughes Clarke, J.E. (2002) The July 1996 flood deposit in the Saguenay Fjord, Quebec, Canada: implications for sources of spatial and temporal backscatter variations. Marine Geology, v.184, p.41-60. https://doi.org/10.1016/S0025-3227(01)00303-6
  34. Urick, R.J. (1983) Principles of underwater sound. McGraw-Hill, p.422.