• Title/Summary/Keyword: Sand addition

Search Result 697, Processing Time 0.025 seconds

A benchmark experiment for analogue modeling of extensional basin formation and evaluation of applicability of centrifuge test (인장 분지 형성을 구현하기 위한 상사 모델링 벤치마크 실험 및 원심모형실험의 적용성 평가)

  • Lee, Sung-Bok;Park, Heon-Joon
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.605-614
    • /
    • 2018
  • For physical experiments like analogue modeling that designed for studying geological deformation, reproducibility of the deformation is important to guarantee the reliability of the experiment. In this study, the normal fault generated by extensional stress is benchmarked using a sand box model. The scaling factors for the modeling test are considered and the experiments are conducted by setting the appropriate material, extensional stress, and boundary condition in the same way as in a benchmark experiment. In addition, a large centrifuge facility is used to vary the centrifugal acceleration and extension rate in the same sized model to account for the scaling factors of the physical quantity during extensional behavior. At 1 g benchmark condition and a centrifugal field at 10 g, a constant rate of the extensional stress is implemented and the topographic evolution is reliably measured. In this study, the reliability and applicability of large centrifuge model tests are evaluated for formulating experiments designed to study geological deformation.

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

Effects of Al-Surplus and Ca-Deficiency on Content and Rhythm of ATP in Plant Leaves (식물엽의 ATP함량과 그 주기에 미치는 Al과잉 및 Ca결핍의 영향)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.23 no.1
    • /
    • pp.17-25
    • /
    • 1980
  • Kidneybean(Phaseolus vlgaris L.) and buckwheat(Fagopyrum esculentum M$\"{O}$nch) seedlings cultured with Hoagland solution to the height of 7 to 10cm in the earthern pot containing sand were used for experimental plants. One group of the plants was irrigated with Hoagland solution composed of various Al concentrations of 0 to 1,000 ppm containing 50ppm Ca, and the other group was irrigated with Hoagland solution composed of various Ca concentrations of 0 to 1,000ppm containing 100ppm Al for a month during June and July. By Al-surplus over 100ppm, the margins of backwheat leaves were curied down and turned into yellow-brown necrosis simialr to Ca-deficiency, and the old kidney bean leaves showed marginal and veinal chlorosis in addition to the early shedding of leaves. With Al-surplus of 100ppm the content of chlorophyll a and b in both plants was decreased by 30~40%. The ratio 3/1 of chlorophyll a/b was not altered by Al-surplus and Ca-deficienty at an early stage, but it was affected markedly at a final stage of growth. Leaf respiration with 100ppm Al containing 50pm Ca was slightly affected in buckwheat, but decreased by 20% in kidneybean. With Al-surplus of 100ppm the ATP content was decreased by 32% in the kidneybean leaves and by 80% in buckwheat leaves, whereas with Ca-deficiency it was decreased by 72% in kidneybean and by 90% in buckwheat. The rhythm of ATP level showed self-relience without being affected by light or temperature under the green house condition although by Al-s rplus and Ca-deficiency the ATP level of the rhythm was lower than that of control.trol.

  • PDF

An Application of Ordinations to Kwangnung Forest (광릉 삼림 군집에 대한 Ordination 방법의 적용)

  • 강윤순
    • Journal of Plant Biology
    • /
    • v.25 no.2
    • /
    • pp.83-99
    • /
    • 1982
  • In this study, thirty-two stands in Kwangnung forest located in the central part of Korea were preferentially selected. In each stand, all stems for trees and shrubs were recorded by species and their girths were measured down to 5cm. In addition, several enviromental factors such as field soil pH, field soil moisture, soil compressibility, depth of soil, thickness of litter layer, elevation and basal area were measured. Three soil cores were sampled and various physical and chemcial properties was determined. The vegetational data were subjected to three kinds of multivariate ordination(PO, PCA, RA). The results suggested that Kwangnung forest was consisted of three forest types: coniferous, mixed and broad leaved forest communities. The relation between the stand scores of ordination and several environmental factors were investigated in terms of correlation analysis in order to examine the relationships between the vegetation and certain environmental factors. As a result of this analysis, the amount of sand content in A1 horizon decreased frm the coniferous to broad leaved forest, while maximum field capacity, pore space, exchangeable cations, loss on ignition, soil pH nad the amount of total nitrogen had a tendancy to increase significantly. However, easily soluble phosphorus appeared to have little to do with the forest types. The result of species ordination of centered-standardized PCA suggested that the major successional pathway in Kwangnung forest was; Pinus densifloralongrightarrowQuercus mongolica, Q. serrata, Q. alienalongrightarrowCarpinus laxifloralongrightarrowC. erosa in sequence. This trend is in good agreement with the past studies. In three kinds of ordination (centered PCA, centered-standardized PCA and RA) based on nineteen species and twenty-five stands, the total variances accounted for the first three axes were 77%, 46% and 63% respectively. The estimated beta diversity in Kwangnung forest assumed as a coenocline, was 1.5~1.8 HC. Increasing the effect of the sampling errors on ordination perfermance, this low heterogeneity seems to cause the poor concentration of the total variance. The results from the four kinds of ordination were in good agreement with each other, especially between PO, centered-standardized PCA and RA appeared robust. It seems to be worthy of applying multivariate method for analyzing other forest communities in Korea.

  • PDF

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.

Field Model Test of the Non-power Soil Cleaning System (무동력 토사제거시스템의 현장모형실험)

  • Park, Chan Keun;Lee, Young Hak;Hong, Seok Min;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.63-73
    • /
    • 2019
  • Coastal and fishing facilities are gradually deteriorating in function due to the continual accumulation of soil sediments, which has affected local economic activities. Currently, there are many methods to remove soil sediments, but these methods are either a temporary solution or require a repetitive removal of the soil sediments, which is a huge financial burden for the maintenance of the facilities. To solve these problems, this study proposed a non-power soil cleaning system and evaluated field applicability by carrying out field model tests. The conditions for the evaluation focused on the drainage-elapsed time and drainage-outflow velocity according to the water level change in the water tank. In the field test, silty clay and sand were separately installed, and sedimentation soil removal test was practiced. As a result, the system was verified to have a sufficient outflow velocity for the removal of soil sediments. In addition, a generalization equation that can be used in different regions of the tide was suggested in this study. These results will greatly contribute to removing soil sediments in ports and dike gate facilities on the southwest coast. Since the system is an eco-friendly technology that does not require additional energy, thus it is expected to contribute to maintenance of sustainable facility performance as well as economic effect in the future.

Modeling potential habitats for Pergularia tomentosa using maximum entropy model and effect of environmental variables on its quantitative characteristics in arid rangelands, southeastern Iran

  • Hosseini, Seyed Hamzeh;Azarnivand, Hossein;Ayyari, Mahdi;Chahooki, Mohammad Ali Zare;Erfanzadeh, Reza;Piacente, Sonia;Kheirandish, Reza
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.227-239
    • /
    • 2018
  • Background: Predicting the potential habitat of plants in arid regions, especially for medicinal ones, is very important. Although Pergularia tomentosa is a key species for medicinal purposes, it appears in very low density in the arid rangelands of Iran, needing an urgent ecological attention. In this study, we modeled and predicted the potential habitat of P. tomentosa using maximum entropy, and the effects of environmental factors (geology, geomorphology, altitude, and soil properties) on some characteristics of the species were determined. Results: The results showed that P. tomentosa was absent in igneous formation while it appeared in conglomerate formation. In addition, among geomorphological units, the best quantitative characteristics of P. tomentosa was belonged to the conglomerate formation-small hill area (plant aerial parts = 57.63 and root length = 30.68 cm) with the highest electrical conductivity, silt, and $CaCO_3$ content. Conversely, the species was not found in the mountainous area with igneous formation. Moreover, plant density, length of roots, and aerial parts of the species were negatively correlated with soil sand, while positive correlation was observed with $CaCO_3$, EC, potassium, and silt content. The maximum entropy was found to be a reliable method (ROC = 0.91) for predicting suitable habitats for P. tomentosa. Conclusion: These results suggest that in evaluating the plant's habitat suitability in arid regions, contrary to the importance of the topography, some environmental variables such as geomorphology and geology can play the main role in rangeland plants' habitat suitability.

The Comparison of Risk Factors for Ischemic Stroke or Intracranial Hemorrhage in Korean Stroke Patients: A Nationwide Population-based Study

  • Choi, Sun-Young;Kim, Ji-In;Hwang, Shin-Woo
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.405-410
    • /
    • 2018
  • Stroke is a leading cause of death in the Korean population and remains a major health burden worldwide. The two main pathologic types of stroke are ischemic stroke and intracranial hemorrhage (ICH), but comparisons of risk factors for these have been limited. We under took a nationwide population-based study to analyze the relationship between these risk factor sand ischemic stroke and ICH. From January 2003 to December 2013, a total of 37,561 patients with newly diagnosed ischemic stroke or ICH were identified using the National Health Insurance Service data base as the study population. Multivariable logistic regression analysis was used to determine the association between baseline risk factors and presentation with ICH versus ischemic stroke. The incidence of ischemic stroke showed an increasing rend every year, while there was no significant change in the incidence of ICH. Of the several risk factors associated with stroke, old age (OR 2.35, 95% CI 2.12~2.49, P < 0.001) was more closely associated with ischemic stroke than ICH, whereas renal disease (OR 0.74, 95% CI 0.55~0.99, P = 0.04) and carotid disease (OR 0.25, 95% CI 0.17~0.35, P < 0.001) were more strongly associated with ICH. In addition, diabetes mellitus, dyslipidemia, hypertension, ischemic heart disease and male sex was associated with an increased risk of ischemic stroke. Old age was more strongly associated with ischemic stroke than ICH, while carotid stenosis and renal impairment were more closely associated with ICH risk. Classic risk factors for stroke have considerably different associations with the two main pathologic types of stroke.

Study on the effective response method to reduce combustible metal fire (금속화재 위험감소 방안에 관한 이론적 연구)

  • Nam, Ki-Hun;Lee, Jun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.600-606
    • /
    • 2018
  • A class D fire or combustible metal fire is characterized by the presence of burning metals. Only certain metals or metal compounds are flammable, including sodium and lithium. General fire extinguishing agents, such as dry chemical powder, water-based fire extinguish agents, and carbon dioxide, cannot be used in class D fires. This is because these agents cause adverse reactions or are ineffective. In addition, the amount of usage of combustible metals is increasing due to continuous development of the semiconductor and fuel cell industries. Despite this, Korea does not have standards and laws related to combustible metal fires. This paper suggests directions of the class D fire management policies to reduce the class D fire risk and impact by analyzing the standards and laws related to class D fires and combustible metal fire cases. The factors to make laws on class D fire prevention and response systems, and management system of dry sand were determined. These results may be used to help reduce the risk of class D fires and improve the response abilities.

Analysis of Sedimentary Environment and Micro-Landform Changes Afterthe Construction of Artificial Structuresin the Tidal Flat of Anmyeondo Gagyeongju, Western Coast of Korea (인공구조물 건설 후 안면도 가경주 간석지의 퇴적환경 및 미지형변화 분석)

  • JANG, Dong-Ho;Ryu, Ju-Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.31-45
    • /
    • 2018
  • This study investigated the characteristics of sedimentary environment changes across a tidal flat in Gagyeongju of Anmyeondo Island. We performed a spatio-temporal analysis on the grain sizes composition of sediments and micro-landform changes during the winter from 2013 to 2016. The results showed that erosion was a dominant processthroughout the study flat, reducing the surface elevation even by 1 m around the upper sand flat. As a consequence, headlands have formed in the entire region of Gagyeongju village. In addition, erosion quickly progressed along the low-lying subtidal zone and tide way and, in contrast, sedimentation progressed in the mid-elevation tidal flat. We posit that a jetty, which had been constructed as a pier facility on the eastern part of the study area, interfered with the flow of tidal current, thereby enhancing these erosional processes. This is because such interference can block the supply of fine-textured sediments from the nearby Cheonsu Bay and therefore reduce surface elevation. According to the surface sediment analysis, the sediments were categorized into 7 sedimentary facies, and generally displayed a high ratio of silt and clay. The result of time-series analysis (2012-2013) showed that the sediments on the tidal flat became fine-grained, and that sorting became worse. However, the sediments on the subtidal zone, embayment and along inside of the jetty tended to be coarse-grained. In conclusion, the tidal flat microlandform change in the study area was caused by a disruption in the seawater circulation due to the jittery construction within the tidal flat, which had a direct effect on erosional and sedimentary environment processes.