• Title/Summary/Keyword: Sand Compaction Pile(SCP)

Search Result 74, Processing Time 0.02 seconds

Analysis of Consolidation Settlement of SCP Improved Ground (SCP 개량지반의 압밀침하 결과 분석)

  • Jung, Sun-Young;Jung, Jong-Bum;Yang, Sang-Yong;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.990-997
    • /
    • 2005
  • In this paper, the measured results obtained from the ground improved by SCP method at quay-wall caisson foundation in Pusan New Port 1-1 phase are analyzed and then compared with the values predicted by a consolidation theory. The measured settlement is generally smaller than the predicted settlement. For consolidation velocity, the measured velocity is later than the predicted value. According to the execution of caisson placing phases, the predicted value shows higher settlement than the measured one with time being.

  • PDF

Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation (변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성)

  • Park, Byung-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.711-719
    • /
    • 2006
  • A series of geotechnical centrifuge model tests and numerical modelling have been performed to study engineering characteristics of the composite ground reinforced by both the Sand Compaction Piles(SCPs) and the deformation-reducing sheet piles. The research has covered several key issues such as the load-settlement relation, the stress concentration ratio and the final water content of the ground Totally three centrifuge tests have been conducted by changing configuration of the sheet piles, i.e., a test without the sheet pile, a test with the sheet pile at a single side and a test with the sheet piles at the both sides. In the model tests, a vertical load was applied in-flight on the ground surface. On the other hand, class-C type numerical modelling has been performed by using the SAGE-CRISP to compare the centrifuge test results using an elasto-plastic model for SCPs and the Modified Cam Clay model for the soft clay. It has been found that the sheet piles can restraint failure of foundation, thereby increasing yield stress of the ground. The stress concentration ratio was in the range of $2{\sim}4$. In addition, numerical analysis results showed reductions both in the ground heave($20{\sim}30%$) and in the horizontal movement($28{\sim}43%$), demonstrating the deformation-reducing effect of the sheet piles.

Characteristics of Crushed Oyster-shell as a Substitute of Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 재료로서 파쇄 굴패각의 특성조사)

  • 윤길림;윤여원;채광석;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.281-290
    • /
    • 2003
  • In order to investigate recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including permeability, confined compression and shear strength of crushed oyster shell were quantitatively examined in terms of fineness modulus and relative density of crushed oyster-shell. Experimental results show that the crushed oyster-shells are lighter than sand in weight, and have similar characteristics on permeability and shear strength to sandy soils. The oyster-shell can be considered as highly crushable material but not much crushable with existing high loads. Based on the laboratory test results, it is highly fudged that the crushed oyster-shell can be a substitute of sand as SCP materials.

Centrifuge Model Experiments for Lateral Soil Movements of Piled Bridge Abutments. (교대말뚝기초의 측방유동에 관한 원심모형실험)

  • Choi, Dong-Hyurk;Jeong, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.63-71
    • /
    • 2005
  • This paper is an experimental result of investigating lateral soil movements at piled bridge abutments by using the centrifuge model facility. Three different centrifuge model experiments, changing the methods of ground improvement at bridge abutment on the soft clayey soil (no improvement, preconsolidation and plastic board drains (PBD), sand compaction pile (SCP) + PBD), were carried out to figure out which method is the most appropriate for resisting against the lateral soil movements. In the centrifuge modelling, construction process in field was reconstructed as close as possible. Displacements of abutment model, ground movement, vertical earth pressure, cone resistance after soil improvement and distribution of water content were monitored during and after centrifuge model tests. As results of centrifuge model experiments, preconsolidation method with PBD was found to be the most effective against the lateral soil movement by analyzing results about displacements of abutment model, ground movement and cone resistance. Increase of shear strength by preconsolidation method resulted in increasing the resistance against lateral soil movement effectively although SCP could mobilize the resistance against lateral soil movement. It was also found that installment with PBD beneath the backfill of bridge abutment induced effective drainage of excess pore water pressure during the consolidation by embanking at the back of the abutment and resulted in increasing the shear strength of clay soil foundation and eventually increasing the resistance of lateral soil movement against piles of bridge abutment.

  • PDF

Forensic Engineering Study on Structure Stability Evaluation of Deep Cement Mixing Vessel using ADINA Software (ADINA 를 이용한 DCM 선박의 구조안정성 평가에 관한 연구)

  • Kim, Eui Soo;Kim, Jong Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1283-1290
    • /
    • 2014
  • Recently, a wide variety of simulation techniques such as structure analysis and structure-fluid interaction analysis are being employed in the field of forensic engineering for resolving the problem of legal liability for accidents and disasters. In this study, we performed a forensic engineering investigation of a sinking accident of a DCM (deep cement mixing) vessel. The accident vessel was built as a dedicated SCP (sand compaction pile) vessel at the time of vessel building, and the DCM vessel was structurally modified, e.g., by increasing the leader height and constructing for leader expansion, without a stability review. To determine the effects of expansion and modification of structures in this sinking accident, structural stability evaluation was performed using commercial software for structural analysis, ADINA software. Through an analysis and comparison of simulation results obtained using ADINA software with the results of the structural modification and expansion, we could determine the exact cause of the sinking accident of the DCM vessel.

Smear Effect on Consolidation Behaviors of SCP-improved Ground (SCP 개량지만의 압밀거동에 대한 스미어 효과)

  • Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.59-66
    • /
    • 2004
  • Sand compaction pile (SCP)-improved ground is composite soil which consists of the SCP and the surrounding soft soil. When a surcharge load is applied to composite ground, time-dependent behaviors occur in the composite soil due to consolidation according to radial flow toward the SCP. In addition, stress transfer also takes place between the SCP and the soft soil. This paper presents the numerical results of cylindrical composite ground that was conducted to investigate smear effect on consolidation behaviors of SCP-improved ground. The results showed that the smeared zone of soft clay had a significant effect on effective stress-pore water pressure response, stress transfer mechanism and stress concentration ratio of composite ground. Amount of stress transfer between the clay and the SCP was maximum in depth of z/H=0.25, and decreased with depth. Stress concentration ratio of composite ground was not constant, but depended on consolidation process. It was also found that the value of stress concentration ratio in soft clay with smeared zone was larger than that in soft clay without smeared zone.

An Evaluation of the Settlement and Stability in the Reclaimed Revetment by Field Monitoring Method (현장계측을 이용한 호안의 침하 및 안정성의 평가)

  • Kim, Hyeong-Ju;Yang, Tae-Seon;Choe, Deok-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.149-155
    • /
    • 1992
  • In case of construction of the final refuse disposal site on the ground where 20m soft clay layer is deposited, Sand Compaction Pile(SCP) was driven with a view to increase the strength and reduce the settlement when the reclaimed revetment intend to be constructed first in a short time. Field monitoring method is carried out in order to overcome the problems of settlement and stability in the construction of the reclaimed revetment and the assumed problems in the design of composite ground. In this paper the observed data from monitoring sections are analysed, fedback to the desigh and field, and compared with FEM analysis. Conclusions are as follow: in case of 70% replacement the use of modified soilparameters makes the FEM analysis of SCP possible. In case of 27% replacement, n(stress concentration ratio)=0.2-0.3, B(measured settleme reduction coefficient)=0.43 are evalated. Also, horizontal displacement is remarkably happened around the ground.

  • PDF

Suggestion of the Prediction Method about Upheaval Shape and Volume for SCP Construction (SCP 시공에 따른 융기토 형상과 체적의 예측기법 제안)

  • Jeong, Gyeong-Hwan;Park, Chan-Woo;Shin, Min-Sik;Hideo-Tsuboi;Mitsuo-Nozu;Lee, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.497-508
    • /
    • 2006
  • Busan-Geoje Fixed Link, total length of 8.2km, consist of bridge and immersed tunnel connects Gaduk island, Busan and Jangmokmyon, Geoje, in extension of the $58^{th}$ local road. The immersed tunnel, a total length of 3.7km within Busan-Geoje Fixed Link, was planed first timein domestic but the deep water depth like maximum of 50m with offshore conditions and the 35m thickness of soft clay layer under the immersed tunnel, migth be some problems like the differential settlement during or after works. So it was designed to install SCP(Sand Compaction Pile) column partially to improve the soft ground under the immersed tunnel. In this paper, it is presented to illustrate the design including ground condition under the immersed tunnel, improvement design, upheaval shape and ratio due to SCP test construction.

  • PDF

Shear Strength and Compressibility of Oyster Shell-Sand Mixtures for Sand Compaction Pile (SCP공법 적용을 위한 굴패각-모래 혼합토의 전단과 압축특성)

  • Yoon Gil-Lim;Yoon Yeo-Won;Chae Kwang-Seok;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.17-23
    • /
    • 2004
  • Strength and deformation characteristics of oyster shell-sand mixtures were investigated to utilize waste oyster shell being treated as a waste material. Standard penetration test (SPT) is a common method to obtain in-situ strength in sand. However, in case of oyster shell-sand mixtures, there was no information between SPT N-value and internal friction angle of mixture soils. In this paper SPT experiments from several large scaled model chamber tests and large scaled direct shear tests were carried out with varying unit weight of oyster shell-sand mixtures. Appropriate correlations were in tile study observed among N-value, unit weight and internal friction angle, which make it possible to estimate in-situ strength from SPT and the coefficient of volume compressibility from the confined compression tests to compute the settlement of oyster shell-sand mixtures.

Shear Strength Characteristics of Recycled-Aggregate Porous Concrete Pile for Soft Ground Improvement (순환골재를 활용한 연약지반개량용 다공질 콘크리트 말뚝의 전단특성)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kang, O-Ram;You, Seung-Kyong;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.75-84
    • /
    • 2008
  • Recycled-aggregate porous concrete pile (RAPP) which forms a composite ground is one of new ground improvement techniques. In this paper, triaxial compression tests are carried out to investigate the shear strength characteristics of RAPP-Clay composite samples. The main purpose of the tests was to investigate the effects of area replacement ratio ($15%{\sim}100%$) on behaviors of RAPP-Clay samples during shearing. Also, triaxial compression tests using Sand-Clay composite samples were performed to compare with the behaviors of RAPP-Clay samples. The test results showed that the friction angle and cohesion of the RAPP-Clay composite were $18{\sim}34$ degree and $557.0{\sim}588.0\;kPa$, respectively, whereas those of sand-clay composite samples were 26~35 degree of friction angel and $4.0{\sim}18.0\;kPa$.