• 제목/요약/키워드: Samsung electronics

검색결과 2,796건 처리시간 0.028초

Two-dimensionally Integrated Fluorescent Lamp for 40 inch LCD-TV Application

  • Kim, Joong-Hyun;Hwang, In-Sun;Byun, Jin-Seob;Park, Hae-Il;Kim, Hyoung-Joo;Jang, Hyeon-Yong;Kang, Seock-Hwan;Kim, Min-Gyu;Kwon, Nam-Ok;Lee, Sang-Yu;Souk, Jun-Hyung;Ko, Jae-Hyeon;Lee, Ki-Yeon;Jung, Kyeong-Taek;Kim, Dong-Woo;Ha, Hae-Soo;Heon, Min;Kim, Nam-Hun;Kim, Hyun-Sook;Kim, Geun-Young;Cho, Seog-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.795-798
    • /
    • 2004
  • After showing 32 inch two-dimensionally integrated fluorescent lamp (TIFL) and its module at SID '04, 40 inch TIFL and its module of prototype have been developed at the first time. It is the biggest size in the world as well as has a backlight unit without BEF optical film. The luminance of TIFL is 14000 nit at 190 watt power consumption and its luminous efficacy is 51 lumen/watt. The use of TIFL simplifies backlight assembly process and removes high price optical sheets. As a result, LCD TV, used by TIFL, is rapidly going to expand its market share in the large size TV area.

  • PDF

Development of 200ppi SOG-LCD

  • Kim, Chul-Ho;Kim, Chul-Min;Moon, Kook-Chul;Park, Kee-Chan;Kim, Il-Gon;Joo, Sueng-Yong;Park, Tae-Hyeong;Maeng, Ho-Suk;Jung, Eu-Jin;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.85-88
    • /
    • 2004
  • 2-inch qVGA (240${\times}$320) TFT-LCD with integrated 6-bit source driver is reported. The pixel density is over than 200ppi and the operation frequency is about 2.8MHz. In order to improve TFT characteristics, TS-SLS (Two-Shot Sequential Lateral Solidification) technology has been employed. A 1:6 demultiplexing scheme has been successfully implemented in the source driver owing to the superb characteristics of the TS-SLS TFTs, which resulted in small driver circuit area.

  • PDF

Ink Jet Printed Full Color Polymer LED Displays

  • Rhee, Jung-Soo;Lee, Dong-Won;Chung, Jin-Koo;Wang, Jian-Pu;Hong, Sang-Mi;Cha, Soon-Wook;Choi, Beom-Rak;Jung, Jae-Hoon;Kim, Nam-Deog;Chung, Kyu-Ha;Gregory, Haydn;Lyon, Peter;Creighton, Colin;Bale, Mark;Carter, Julian
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1046-1049
    • /
    • 2005
  • We have developed polymer LED displays using ink jet printing without visible swathe marks which can be observed during display operation. In addition, we have also developed a single-pass printing technology for hole-conduction layer deposition to significantly reduce the complexity of interlacing printing across the panel which is known as an alternative to remove the swathe mark.

  • PDF

Development of a 14.1 inch Full Color AMOLED Display with Top Emission Structure

  • Jung, J.H.;Goh, J.C.;Choi, B.R.;Chai, C.C.;Kim, H.;Lee, S.P.;Sung, U.C.;Ko, C.S.;Kim, N.D.;Chung, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.793-796
    • /
    • 2005
  • A structure and a design of device were developed to fabricate large-scale active matrix organic light-emitting diode (AMOLED) display with good color purity and high aperture ratio. With these technologies, we developed a full color 14.1 inch WXGA AMOLED display. For the integration of OLED on an active matrix a-Si TFT backplane, an efficient top emission OLED is essential since the TFT circuitry covers a large position of the pixel aperture. These technologies will enable up the OLED applications to larger size displays such as desktop monitors and TVs.

  • PDF

Fabrication of an All-Layer-Printed TFT-LCD Device via Large-Area UV Imprinting Lithography

  • Lee, Seung-Jun;Park, Dae-Jin;Bae, Joo-Han;Lee, Sung-Hee;Kim, Jang-Kyum;Kim, Kyu-Young;Bae, Jung-Mok;Kim, Bo-Sung;Kim, Soon-Kwon;Lee, Su-Kwon;Kwon, Sin;Seo, Jung-Woo;Kim, Ki-Hyun;Cho, Jung-Wok;Chang, Jae-Hyuk
    • Journal of Information Display
    • /
    • 제11권2호
    • /
    • pp.49-51
    • /
    • 2010
  • Nanoimprint lithography (NIL) using ultraviolet (UV) rays is a technique in which unconventional lithographic patterns are formed on a substrate by curing a suitable liquid resist in contact with a transparent patterned mold, then releasing the freshly patterned material. Here, various solutions are introduced to achieve sufficient overlay accuracy and to overcome the technical challenges in resist patterning via UV imprinting. Moreover, resist patterning of all the layers in TFT and of the BM layer in CF was carried out using UV imprinting lithography to come up with a 12.1-inch TFT-LCD panel with a resolution of $1280{\times}800$ lines (125 ppi).

Spin-transfer Torque Switching in nano-sized MTJ

  • Oh, S.C.;Lee, J.E.;Nam, K.T.;Jeong, J.H.;Yeo, I.S.;Kim, S.T.;Han, W.S.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2007년도 The 1st International Symposium on Advanced Magnetic Materials
    • /
    • pp.61.2-61.2
    • /
    • 2007
  • PDF

Data Retention Time and Electrical Characteristics of Cell Transistor According to STI Materials in 90 nm DRAM

  • Shin, S.H.;Lee, S.H.;Kim, Y.S.;Heo, J.H.;Bae, D.I.;Hong, S.H.;Park, S.H.;Lee, J.W.;Lee, J.G.;Oh, J.H.;Kim, M.S.;Cho, C.H.;Chung, T.Y.;Kim, Ki-Nam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권2호
    • /
    • pp.69-75
    • /
    • 2003
  • Cell transistor and data retention time characteristics were studied in 90 nm design rule 512M-bit DRAM, for the first time. And, the characteristics of cell transistor are investigated for different STI gap-fill materials. HDP oxide with high compressive stress increases the threshold voltage of cell transistor, whereas the P-SOG oxide with small stress decreases the threshold voltage of cell transistor. Stress between silicon and gap-fill oxide material is found to be the major cause of the shift of the cell transistor threshold voltage. If high stress material is used for STI gap fill, channel-doping concentration can be reduced, so that cell junction leakage current is decreased and data retention time is increased.

An Internal Touch Screen Panel Using Standard a-Si:H TFT LCD process

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Ki-Chan;Han, Sang-Youn;Koh, Jai-Hyun;Takahashi, Seiki;Berkeley, Brian H.;Kim, Nam-Deog;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.250-253
    • /
    • 2008
  • A touch screen panel embedded 12.1-inch TFT LCD employing a standard a-Si:H TFT process has been successfully developed. Compared with conventional external touch screen panels, the new internal TSP exhibits a clearer image and improved touch feeling. Our new internal proposed TSP can be fabricated with low cost.

  • PDF

Enhancing Lifetime of White OLED Device by Minimizing Operating Voltage Increase

  • Lee, Sung-Soo;Choi, Jun-Ho;Ha, Jae-Kook;Lee, Sang-Pil;Kim, Seong-Min;Choi, Ji-Hye;Lee, Soo-Yeon;Kim, Hyo-Seok;Chu, Chang-Woong;Shin, Sung-Tae;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1658-1660
    • /
    • 2007
  • We fabricate green device having unique life time characteristics of operating voltage reduction with time, ${\Delta}V_{op}$ <0. A green device needs lower voltage than initial voltage for sustaining constant current as life time goes on. It means there are two possible reasons; one is interface modification between anode and HIL due to oxygen plasma treatment and the other is bulk property modification due to combination of new green host and new green dopant. From these materials and oxygen plasma treatment, we can make white OLED device having the characteristics of low ${\Delta}V_{op}$ increasing.

  • PDF