Fabrication of an All-Layer-Printed TFT-LCD Device via Large-Area UV Imprinting Lithography

  • Lee, Seung-Jun (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Park, Dae-Jin (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Bae, Joo-Han (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Lee, Sung-Hee (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Kim, Jang-Kyum (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Kim, Kyu-Young (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Bae, Jung-Mok (Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd.) ;
  • Kim, Bo-Sung (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Kim, Soon-Kwon (LCD R&D Center, Samsung Electronics Co., Ltd.) ;
  • Lee, Su-Kwon (Mechatronics & Manufacturing Technology Center, Samsung Electronics Co., Ltd.) ;
  • Kwon, Sin (Mechatronics & Manufacturing Technology Center, Samsung Electronics Co., Ltd.) ;
  • Seo, Jung-Woo (Mechatronics & Manufacturing Technology Center, Samsung Electronics Co., Ltd.) ;
  • Kim, Ki-Hyun (Mechatronics & Manufacturing Technology Center, Samsung Electronics Co., Ltd.) ;
  • Cho, Jung-Wok (Mechatronics & Manufacturing Technology Center, Samsung Electronics Co., Ltd.) ;
  • Chang, Jae-Hyuk (LCD R&D Center, Samsung Electronics Co., Ltd.)
  • Received : 2010.02.19
  • Accepted : 2010.06.21
  • Published : 2010.06.30

Abstract

Nanoimprint lithography (NIL) using ultraviolet (UV) rays is a technique in which unconventional lithographic patterns are formed on a substrate by curing a suitable liquid resist in contact with a transparent patterned mold, then releasing the freshly patterned material. Here, various solutions are introduced to achieve sufficient overlay accuracy and to overcome the technical challenges in resist patterning via UV imprinting. Moreover, resist patterning of all the layers in TFT and of the BM layer in CF was carried out using UV imprinting lithography to come up with a 12.1-inch TFT-LCD panel with a resolution of $1280{\times}800$ lines (125 ppi).

Keywords

References

  1. G. Y. Jung, S. Ganapathiappan, D. A. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong, and R. S. Williams Dei, Nano Letters 4, 1225 (2004). https://doi.org/10.1021/nl049487q
  2. F. A. Houle, C. T. Pettner, D. C. Miller, and R. Sooriyakumaran, Appl. Phys. Lett. 90, 213103 (2007). https://doi.org/10.1063/1.2740578
  3. E. Menard, M. A. Meitl, Y. Sun, J. U. Park, D. J. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, Chem. Rev. 107, 1117 (2007). https://doi.org/10.1021/cr050139y
  4. M. J. Lee, N. Y. Lee, J. R. Lim, J. B. Kim, M. Kim, H. K. Baik, and Y. S. Kim, Adv. Mater. 18, 3115 (2006). https://doi.org/10.1002/adma.200601268
  5. M. Kim, and Y. S. Kim, J. AM. CHEM. SOC. 129, 11304 (2007). https://doi.org/10.1021/ja072981m
  6. N. Y. Lee, and Y. S. Kim, Nanotechnology 18, 415303 (2007). https://doi.org/10.1088/0957-4484/18/41/415303
  7. J. Bae, J. Chang, K. Kim, B. Kim, N. Noh, and S. Lim, Oral Presentation at International Conference on Nanoimprint and Nanoprint technology (NNT'08), Oct, (2008), Kyoto, Japan, "Large Area UV Nanoimprint Lithography for TFTLCD Devices."