본 연구에서는 선형추세를 갖는 모집단에 대한 효율적인 표본추출방법과 모평균 추정법을 제안하였다. 이 방법은 계통추출을 확장한 중심균형계통추출을 써서 표본을 뽑은 뒤 표본평균보다 수정된 추정량을 써서 모평균을 추정하는 것이다. 수정된 추정량을 정하는 데에 보간법의 개념을 사용하였다. 제안된 추정량과 기존의 방법에 으한 추정량들의 효율을 Cochran(1946)의 무한초모집단모형에 근거를 둔 기대평균제곱오차를 기준으로 하여 비교하였다. 제안된 방법은 표본크기 n($\geq$5)이 홀수이고 추출률의 역수인 $textsc{k}$가 짝수인 경우에 사용하기 위한 것이다. 모의실험을 이용한 예어서도 역시 좋은 결과가 얻어졌다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권10호
/
pp.4940-4957
/
2019
Compared with the localization methods in the static sensor networks, node localization in dynamic sensor networks is more complicated due to the mobility of the nodes. Dynamic Sampling Localization Algorithm Based on Virtual Anchor (DSLA) is proposed in this paper to localize the unknown nodes in dynamic sensor networks. Firstly, DSLA algorithm predicts the speed and movement direction of nodes to determine a sector sampling area. Secondly, a method of calculating the sampling quantity with the size of the sampling area dynamically changing is proposed in this paper. Lastly, the virtual anchor node, i.e., the unknown node that got the preliminary possible area (PLA), assists the other unknown nodes to reduce their PLAs. The last PLA is regarded as a filtering condition to filter out the conflicting sample points quickly. In this way, the filtered sample is close to its real coordinates. The simulation results show that the DSLA algorithm can greatly improve the positioning performance when ensuring the execution time is shorter and the localization coverage rate is higher. The localization error of the DSLA algorithm can be dropped to about 20%.
In this paper we have suggested a family of chain estimators of the population mean $\bar{Y}$ of a study variate y using two auxiliary variates in two phase (double) sampling assuming that the coefficient of variation of the second auxiliary variable is known. It is well known that chain estimators are traditionally formulated when the population mean $\bar{X}_1$ of one of the two auxiliary variables, say $x_1$, is not known but the population mean $\bar{X}_2$ of the other auxiliary variate $x_2$ is available and $x_1$ has higher degree of positive correlation with the study variate y than $x_2$ has with y, $x_2$ being closely related to $x_1$. Here the classes are constructed when the population mean $\bar{X}_1\;of\;X_1$ is not known and the coefficient of variation $C_{x2}\;of\;X_2$ is known instead of population mean $\bar{X}_2$. Asymptotic expressions for the bias and mean square error (MSE) of the suggested family have been obtained. An asymptotic optimum estimator (AOE) is also identified with its MSE formula. The optimum sample sizes of the preliminary and final samples have been derived under a linear cost function. An empirical study has been carried out to show the superiority of the constructed estimator over others.
본 연구에서는 2006년 5월에 KBS/SBS에서 공동으로 실시한 제4회 전국동시지방선거 출구조사 과정을 소개하는 동시에 출구조사 자료를 통해 투표자의 특성(성별 및 연령대)에 따른 투표성향과 시간대별 투표자 특성을 정리하고, 출구조사 선거구별 득표율을 예측치와 실제 개표결과를 비교하여 출구조사의 예측오차를 살펴본다. 이를 위해 이번 출구조사에서 적용된 전반적인 표본추출방법 및 실사과정을 정리하고, 출구조사에서 발생한 전체 오차를 편향과 표본추출오차로 분리하여 오차의 특성을 분석한다. 편향 발생원인 중 하나로 볼 수 있는 표본의 대표성을 검토하기 위해 출구조사 표본을 선관위에서 집계한 투표자 투표율 분석결과와 비교하여 평가한다. 아울러 이번 지방선거 출구조사에서 적용된 '층화 후 정렬계통추출법'에 따른 분산추정법을 적용하여 출구조사의 정확성을 표본추출오차 관점에서 살펴본다.
Journal of the Korean Data and Information Science Society
/
제28권5호
/
pp.1077-1085
/
2017
본 연구에서는 한국노동연구원의 "2015년 한국노동패널조사 (KLIPS)" 자료를 활용하여 국내 여성의 임금 결정요인을 분석하기 한다. 일반적으로 임금 자료는 랜덤 추출이 불가능하기 때문에 분석하기가 쉽지 않다. 표본 선택 편의 (sampling bias)가 있는 자료를 분석하는 방법으로 Heckman 표본 선택 모형이 가장 널리 알려져 있다. Heckman은 크게 두 가지 모형을 제안했는데, 그 중 하나는 최대 우도 방법을 이용하는 것이고, 다른 하나는 2단계 표본 선택 모형이다. 이 중 Heckman 2단계 표본 선택 모형은 주된 결과 모형 (outcome model)과 경제 활동 여부를 결정짓는 선택 모형 (selection model)을 포함한 모형으로써, 이 모형이 최대 우도 방법을 이용한 모형에 비해 이변수 오차의 정규분포 가정에 덜 민감하다고 알려져 있다. 그럼에도 불구하고 이변수 오차에 대한 정규 분포 가정은 꽤 강한 가정이라고 볼 수 있는데, 최근에 이 모형의 단점을 보완하는 모형으로 Marchenko와 Genton (2012)의Heckman 표본 선택 t 모형이 제시되었다. Heckman 2단계 모형과 Heckman 표본 선택 t 모형을 이용하여 국내 여성의 임금 결정 요인을 분석하고 비교하도록 한다.
대기중에 PCBs의 바이오 모니터용으로 널리 이용되고 있는 소나무잎을 채취할 때 발생하는 오차를 줄이기 위한 방법에 관하여 연구한 결과 다음과 같은 결론을 얻었다. 1. 새잎에서부터 3년생 잎까지 소나무잎에 농축된 ${\sum}$PCBs의 농도는 거의 일정한 율로 증가하는 바소나무잎은 대기중 PCBs의 장기간에 걸친 바이오 모니터링용으로 이용할 수 있음을 알았다. 반면,이러한 특성은 어린잎과 오래된 잎을 혼합하여 분석하거나 서로 다른 지역 간의 오염도를 비교할 때 연도가 서로 다른 잎들 중의 농도를 비교해서는 아니된다는 것을 말해준다. 2. 서로 수령이 다른 몇 그루의 나무에서 채취한 잎중 ${\sum}$PCBs의 차이는 거의 없었다. 3. 높은 나무 꼭데기에서 자라는 잎에 침착된 ${\sum}$PCBs 농도가 지상 가까이에서 자라는 나뭇잎에서 보다 낮은 농도를 보였다. 4. 다른 나뭇가지나 숲으로 가려져 있어 통풍이 원활하지 못하는 곳에서 자라는 잎은 통풍이 잘 되는 곳에서 자란 잎에 비하여 침착된 ${\sum}$PCBs의 농도거 상당히 낮은 값을 보였다.
Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.
제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
/
pp.530-533
/
1993
This paper describes a new method of dynamic error compensation, using a digital convolution integrator and two digital low pass filters. In this method, the process of compensation consists of three steps. First, sampling and digitizing of input signal, second, removing the noise in sampled data by the low pass filter and third, making a convolution integral using the output data of low pass filters. This method showed a good experimental result of reducing dynamic error even if there was a slight noise in the input signal. As a result, the detecting time constant of resistance thermo-bulb was improved to about 1/10th.
Gamut mapping is a technique that acts on cross-media reproduction to transform a color between devices for the purpose of enhancing the appearance or preserving the appearance of an image. Gamut mapping essentially produces color conversion error which depends the gamut mapping method, source and destination devices, and sample points for gamut modeling. For color space conversion between monitor colors and printer colors, empirical representation using sample measurements is currently widely utilized. Color samples are uniformly selected in the device space such as CMY or RGB, represented as color patches, and then measured. However, in the case of printer, these color samples are not evenly distributed inside the printer gamut and the color conversion error is increased. Accordingly, this paper introduces a equally distributed color sampling method in CIELAB space, a device-independent color space, to reduce color conversion error, and the performance is analyzed via color space conversion experiments using tetrahedral interpolation.
This paper presents an improved hys- teresis current control method for three-phase PWM power inverters using 3-level comparator. Hysteresis current controller using 3-level comparator has an advantage of constant switching frequency compared with conventional hysteresis current controller. However, this method has disadvantage that the longer sampling period, the larger current error because the switching is performed without considering current error magnitude of each phase. The proposed method improves the control performance by selecting the optimum switching pattern in which the magnitudes of current errors are considered introducing space vector concept. Simulation results using Matlab/Simulink show that the proposed control method reduces current error keeping the merit of previous hysteresis current control method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.