• Title/Summary/Keyword: Sample-loading

Search Result 308, Processing Time 0.028 seconds

Analysis of End-Plated Propellers by Panel Method (패널법에 의한 날개끝판부착 프로펠러의 해석)

  • C.S. Lee;I.S. Moon;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.55-63
    • /
    • 1995
  • This paper describes the procedure to analyze the performance of the end-plated propeller(EPP) by a boundary integral method. The screw blade(SB) and end-plate(EP) are represented by a set of quadrilateral panels, where the source and normal dipole of uniform strength are distributed. The perturbation velocity potential, being the only unknown via the potential-based formulation, is determined by satisfying the flow tangency condition on the blade and the end-plate at the same time. The Kutta condition is satisfied through an iterative process by requiring the null pressure jump across the upper and lower sides of the trailing edges of both the SH and the EP. Sample calculations indicate that the EP increases the loading near the tip of the SB while spreading the trailing vortices along the trailing edge of the EP, thus avoiding the strong tip-vortex formation. Predicted performance of the EPP shows good correlations with the experimental results. The method is therefore considered applicable in designing and analyzing the EPP which may be an alternative for energy-saving propulsive devices.

  • PDF

The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material

  • Akbulut, Makbule Bilge;Bozkurt, Durmus Alperen;Terlemez, Arslan;Akman, Melek
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.5.1-5.9
    • /
    • 2019
  • Objectives: The aim of this in vitro study was to evaluate the push-out bond strength of a novel calcium silicate-based root repair material-BIOfactor MTA to root canal dentin in comparison with white MTA-Angelus (Angelus) and Biodentine (Septodont). Materials and Methods: The coronal parts of 12 central incisors were removed and the roots were embedded in acrylic resin blocks. Midroot dentin of each sample was horizontally sectioned into 1.1 mm slices and 3 slices were obtained from each root. Three canal-like standardized holes having 1 mm in diameter were created parallel to the root canal on each dentin slice with a diamond bur. The holes were filled with MTA-Angelus, Biodentine, or BIOfactor MTA. Wet gauze was placed over the specimens and samples were stored in an incubator at $37^{\circ}C$ for 7 days to allow complete setting. Then samples were subjected to the push-out test method using a universal test machine with the loading speed of 1 mm/min. Data was statistically analyzed using Friedman test and post hoc Wilcoxon signed rank test with Bonferroni correction. Results: There were no significant differences among the push-out bond strength values of MTA-Angelus, Biodentine, and BIOfactor MTA (p > 0.017). Most of the specimens exhibited cohesive failure in all groups, with the highest rate found in Biodentine group. Conclusions: Based on the results of this study, MTA-Angelus, Biodentine, and BIOfactor MTA showed similar resistances to the push-out testing.

Influence of late removal after treatment on the removal torque of microimplants

  • Kim, Ho-Jin;Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.52 no.3
    • /
    • pp.201-209
    • /
    • 2022
  • Objective: To compare the removal torque of microimplants upon post-use removal and post-retention removal and to assess the influencing factors. Methods: The sample group included 241 patients (age, 30.25 ± 12.2 years) with 568 microimplants. They were divided into the post-use (microimplants removed immediately after use or treatment) and post-retention (microimplants removed during the retention period) removal groups. The removal torque in both groups was assessed according to sex, age, placement site and method, and microimplant size. Pearson correlation and multiple linear regression analyses were performed for evaluating variables influencing the removal torque. Results: The mean period of total in-bone stay of microimplants in the post-retention removal group (1,237 days) was approximately two times longer than that in the post-use removal group (656.28 days). The removal torques in the post-retention removal group (range, 4-5 N cm) were also higher than those in the post-use removal group. The mandible and pre-drilling groups demonstrated higher placement and removal torques than did the maxilla and no-drilling groups, respectively. In the no-drilling post-use removal group, the placement torque and microimplant length positively correlated with the removal torque. In the post-retention removal group, unloading in-bone stay period and microimplant diameter positively correlated with the removal torque in the no-drilling and pre-drilling methods, respectively. Conclusions: The removal torques differed according to the orthodontic loading and removal time of microimplants. With prolonged retention of microimplants inserted using the no-drilling method, the removal torque was clinically acceptable and positively correlated with the unloading in-bone stay period.

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.

Fast Consolidation Test Using Seepage Forces : Method and Validation (침투압을 이용한 급속압밀시험 : 방법 및 검증)

  • Lee, Kang-Il;Kim, Tae-Hyung;Znidarcic, Dobroslav
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.31-38
    • /
    • 2009
  • A continuous, fast, and convenient experimental method, replacing recent tests such as standard oedometer or self weight consolidation test, is needed for the determination of the consolidation behavior of unformed soft soils. This study introduced the seepage induced fast consolidation test using the flow pump technique. It can obtain the consolidation characteristics of unformed soft soils conveniently and fast. The seepage induced consolidation test apparatus consists of a modified triaxial cell, differential pressure transducer, flow pump, and displacement transducer. The test continuously proceeds with starting seepage forces induced consolidation, loading consolidation, and permeability test on the same sample. In addition, this test result was compared with the standard oedometer test result to make this method valid. From this study it was found that this method is a convenient and time saving effective method for obtaining data required for calculation of consolidation settlement of unformed soft soils.

Mechanism of failure in the Semi-Circular Bend (SCB) specimen of gypsum-concrete with an edge notch

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.81-91
    • /
    • 2022
  • The effects of interaction between concrete-gypsum interface and edge crack on the failure behavior of the specimens in senicircular bend (SCB) test were studied in the laboratory and also simulated numerically using the discrete element method. Some quarter circular specimens of gypsum and concrete with 5 cm radii and hieghts were separately prepared. Then the semicircular testing specimens were made by attaching one gypsum and one concrete sample to one another using a special glue and one edge crack is produced (in the interface) by do not using the glue in that part of the interface. The tensile strengths of concrete and gypsum samples were separately measured as 2.2 MPa and 1.3 MPa, respectively. during all testing performances a constant loading rate of 0.005 mm/s were stablished. The proposed testing method showed that the mechanism of failure and fracture in the brittle materials were mostly governed by the dimensions and number of discontinuities. The fracture toughnesses of the SCB samples were related to the fracture patterns during the failure processes of these specimens. The tensile behaviour of edge notch was related to the number of induced tensile cracks which were increased by decreasing the joint length. The fracture toughness of samples was constant by increasing the joint length. The failure process and fracture pattern in the notched semi-circular bending specimens were similar for both methods used in this study (i.e., the laboratory tests and the simulation procedure using the particle flow code (PFC2D)).

The Development of the Ajou Compassionate Love Scale: A Korean Abbreviation of Sprecher and Fehr's Compassionate Love Scale (아주 연민사랑척도 개발: Sprecher와 Fehr의 Compassionate Love Scale의 한국판 단축형)

  • Gim, Wan-Suk;Shin, Kang-Hyun
    • Korean Journal of Health Psychology
    • /
    • v.19 no.1
    • /
    • pp.407-420
    • /
    • 2014
  • In this study, a Korean abbreviation scale to measure love and compassion toward other person was developed based on a critical review on Compassionate Love Scale(CLS; Sprecher, & Fehr, 2005). In the study 1, 12 items were selected from the original version of 21 item CLS by surveying a sample of 207 college students on the basis of several psychometric characteristics (i.e., discriminability, coefficient of factor loading, and contribution to internal consistency). In the study 2, the validity of 12 item version, ACLS (Ajou Compassionate Love Scale), was confirmed by examining the factor structure, reliability, and correlations with other related scales. The results clearly showed that ACLS not only had a sufficient psychometric properties as the CLS, but also superior to the CLS in terms of parsimoniousness. Limitations and implications for future research of ACLS were discussed.

Work Ability Index: Psychometric Testing in Aeronautical Industry Workers

  • Maria Eugenia Gonzalez-Dominguez;Elena Fernandez-Garcia;Olga Paloma-Castro;Regina Maria Gonzalez-Lopez;Maria Paz Rivas Perez;Luis Lopez-Molina;Jesus Garcia-Jimenez;Jose Manuel Romero-Sanchez
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • Background: The Work Ability Index (WAI) is an instrument that measures work ability. The wide dispersion of the WAI internationally has led to its adaptation for use in different countries. This study aimed to evaluate the psychometric properties of the Spanish version of the WAI. Methods: A methodological design was used over an opportunistic sample of 233 workers in the aeronautical industry in Spain. Reliability was evaluated through internal consistency. Factorial validity, known groups, and convergent validity were tested. Results: The Cronbach's alpha and item-total correlation indicated an adequate internal consistency. The confirmatory factor analysis, performed to evaluate the factorial validity, found adequate fit indices for a two-factor solution with a high correlation between the factors. Factor 1, "Subjectively estimated work ability and resources", was composed of 3 subscales and factor 2, "Ill-health-related", of 2 subscales. Subscales 4 and 6 had loading in both factors. Workers under 45 years of age obtained higher significant scores than older ones. Convergent validity was also evidenced since WAI was highly correlated with self-assessment of health status. Conclusions: The Spanish version of the WAI has shown evidence of reliability and validity in this study, supporting its use in individual and collective health surveillance by occupational health professionals. The factorial solution that was found has previously been reported in another international context. However, further research is needed to resolve the discrepancies detected in the role of some subscales between other national and international studies.

Analysis of Structural Safety of the Welded Pipe Columns Adopted in Paprika Greenhouse (파프리카 재배용 온실에서 용접 파이프 기둥재의 구조적 안전성 검토)

  • Suh, Won-Myung;Choi, Man-Kwon;Im, Jae-Un;Kwon, Sun-Ju;Kim, Hyeon-Tae;Kim, Young-Ju;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • This study was conducted on greenhouses whose side heights had been raised after the columns of 1-2W basic type greenhouses had been cut and welding with the same-sized pipes. When the wind load or snow load affects restructured pipe greenhouse like this, those parts will be structurally unsafe. To examine this, the bending strength of welded columns were measured through four stages and compared with the pipes in their original condition. Results are as follows. In the case of a bending test on welded joints about steel pipes used for greenhouses, satisfactory results couldn't be drawn because sections of both ends and the loading parts couldn't endure loads and sank regardless of loading methods. Partial problems could be solved by inserting inside pipe(steel bar) at the sections and the loading parts, but it was necessary to devise more satisfactory bending test methods. The strength of welded joints wasn't much different compared with original conditions and demonstrated only slight differences according to the sample production conditions. However, significant incompleteness in the welding process was expected to cause a decisive loss in strength. On the assumption that there were no problems in the welding process or with regard to the inclination of sub materials for columns after connection, it was deemed reasonable to assume that the strength of welded pipes was about 84~90% of the strength of the pipes in their original condition. Considering mid- and long-term strength decline following the onset of rust at joints or welding sections, structural changes in the main sub materials that are used for greenhouses at farmhouses have to be avoided to ensure structural safety, unless these changes are inevitable.

Relationships between Fatty Acids and Tocopherols of Conventional and Genetically Modified Peanut Cultivars Grown in the United States (미국산 전통품종과 유전자 재조합 땅콩품종의 지방산과 토코페롤의 상관관계)

  • Shin, Eui-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1618-1628
    • /
    • 2013
  • Relationships between fatty acids and tocopherols in conventional and genetically modified peanut cultivars were studied by gas chromatography with flame ion detector and high performance liquid chromatography with fluorescence detection. Eight fatty acids and four tocopherol isomers in the sample set were identified and quantified. Oleic acid and linoleic acid are major fatty acids and the ratio of oleic and linoleic acids ranged from 1.11 to 16.26. Tocopherols contents were 6.76 to 12.24 for ${\alpha}$-tocopherol (T), 0.08 to 0.39 for ${\beta}$-T, 5.28 to 15.02 for ${\gamma}$-T, and 0.17 to 1.17 mg/100 g for ${\delta}$-T. Correlation coefficient (r) for fatty acids and tocopherols indicated a strong inverse relationship between oleic & linoleic acids (r=-0.97, P<0.05) and positive relationships between palmitic & linoleic acids (r=0.95, P<0.05) and ${\gamma}$-T & ${\delta}$-T (r=0.83, P<0.05). Principal component analysis (PCA) of fatty acids and tocopherols gave four significant principal components (PCs, with eigenvalues>1), which together account for 85.49% of the total variance in the data set with PC1 and PC2 contributing 45.27% and 21.33% of the total variability, respectively. Eigen analysis of the correlation matrix loadings of the four significant PCs revealed that PC1 was mainly contributed by palmitic, oleic, linoleic, and gondoic acids, while PC2 was by behenic acid, ${\beta}$-T, and ${\gamma}$-T. The score plot generated by PC1-PC2 identified sample clusters in the two spatial planes based on the oleic and linoleic acids. The score plot PC3-PC4 didn't separate sample groups.