• Title/Summary/Keyword: Salt stress tolerance

Search Result 188, Processing Time 0.03 seconds

Expression of Bacillus subtilis proBA Genes and Reduction of Feedback Inhibition of Proline Synthesis Increases Proline Production and Confers Osmotolerance in Transgenic Arabidopsis

  • Chen, Mingqing;Wei, Hongbo;Cao, JunWei;Liu, Ruijie;Wang, Youliang;Zheng, Congyi
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.396-403
    • /
    • 2007
  • Proline accumulation has been shown to correlate with tolerance to drought and salt stresses in plants. We attempt to introduce the wild-type, mutant, and fusion proBA genes derived from Bacillus subtilis into Arabidopsis thaliana under the control of a strong promoter cauliflower mosaic virus 35S (CaMV35S). The transgenic plants produced higher level of free proline than control and the overproduction of proline resulted in the increased tolerance to osmotic stress in transgenic plants. Besides, the mutation in proBA genes, which were proved to lead $\alpha$-glutamyl kinase ($\alpha$-GK) reduces sensitivity to the end-product inhibition and the fusion of proB and proA also result in increasing proline production and confer osmotolerance in transgenic lines.

Development and Characterization of EMS-induced Mutants with Enhanced Salt Tolerance in Silage Maize (EMS 유도 내염성 증진 사료용 옥수수 돌연변이체 선발 및 특성 분석)

  • Cho, Chuloh;Kim, Kyung Hwa;Seo, Mi-Suk;Choi, Man-Soo;Chun, Jaebuhm;Jin, Mina;Kim, Dool-Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.406-415
    • /
    • 2020
  • Maize (Zea mays L.) is one of the most valuable agricultural crops and is grown under a wide spectrum of environmental conditions. However, maize is moderately sensitive to salt stress, and soil salinity is a serious threat to its production worldwide. In this study, we used ethyl methane sulfonate (EMS) to generate salt-tolerant silage maize mutants. We screened salt-tolerant lines from 203 M3 mutant populations by evaluating the morphological phenotype after salt stress treatment and selected the 140ES91 line. The 140ES91 mutant showed improved plant growth as well as higher proline content and leaf photosynthetic capacity compared with those of wild-type plants under salt stress conditions. Using whole-genome re-sequencing analysis, 1,103 single nucleotide polymorphisms and 71 insertions or deletions were identified as common variants between KS140 and 140ES91 in comparison with the reference genome B73. Furthermore, the expression patterns of three genes, which are involved in salt stress responses, were increased in the 140ES91 mutant under salt stress. Taken together, the mutant line identified in our study could be used as an improved breeding material for transferring salt tolerance traits in maize varieties.

Tolerance to Salt Stress by Plant Growth-Promoting Rhizobacteria on Brassica rapa var. glabra

  • Hussein, Khalid A.;Yoo, Jaehong;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.776-782
    • /
    • 2016
  • Salinity has been a threat to agriculture in some parts of the world; and recently, the threat has grown. Plant growth-promoting rhizobacteria (PGPR) may benefit plant growth, either by improving plant nutrition or producing plant growth hormones. The effects of rhizobacterial strains to attenuate the salinity stress on the germination of Chinese cabbage seeds were tested using four different concentrations of NaCl (50, 100, 150, and 200 mM). Also, PGPR strains were tested to enhance the early germination of Chinese cabbage seeds under normal conditions. Azotobacter chroococcum performed best with enhancing the radicle length of 4.0, 1.2, and 1.0 times at treatments of 50, 100, and 150 mM of NaCl, respectively. Additionally, significant differences were found in plumule length, A. chroococcum and Lactobacillus sp. showed remarkable activation either in normal or under stress conditions. Co-inoculation by three rhizobacterial strains (LAPmix) indicated synergistic effect to enhance the early germination of the seeds. The results of this study are promising for application of rhizobacterial strains that possess plant growth promoting traits to enhance the plant tolerance against salinity.

A Selection of Phragmites australis for Purification of Waste Landfill Leachate (쓰레기 매립지 침출수 정화를 위한 갈대 선발)

  • Cho, Yong-Joo;Yi, Jong-Young;Choi, Hong-Keun;Kim, Chang-Kyun;Lee, Eun-Ju
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1129-1137
    • /
    • 2008
  • We investigated the ecological characteristics of reed populations growing in Korea and tried to select reed populations showing better growth patterns in waste landfill leachate. To examine the growth characteristics, 14 reed populations from various habitats were collected. Four reed populations were from inland reclaimed habitats, 4 reed populations from brackish or salt marsh habitats, and 6 reed populations from fresh water habitats. Total plant biomass after the treatment with landfill leachate showed that Daebudo and Nanjido reed populations had the higher biomass with 3755 g DW/pot and 3305 g DW/pot, respectively. Reed populations being sampled from the higher salinity and landfill habitats had relatively higher total biomass than that of other reed populations. Especially reed populations from landfill habitats showed higher biomass. Reed populations from Songjiho and Daebudo, which were believed to have tolerance to salt stress, also showed good growth patterns. Population from the fresh water habitats exhibited relatively lower tolerance to leachate treatment compared to others. From the results, we could conclude that reed populations from Nanjido and Daebudo with higher biomass and better salt tolerance were able to good candidates for purification of waste landfill leachate.

Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolerances

  • Hwang, Eul-Won;Park, Soo-Chul;Jeong, Mi-Jeong;Byun, Myung-Ok;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • As one way to approach to cold defense mechanism in plants, we previously identified the gene for protein-tyrosine phosphatase (CaTPP1) from hot pepper (Capsicum annuum) using cDNA microarray analysis coupled with Northern blot analysis. We showed that the CaTPP1 gene was strongly induced by cold, drought, salt and ABA stresses. The CaTPP1 gene was engineered under control of CaMV 35S promoter for constitutive expression in transgenic tobacco plants by Agrobacterium-mediated transformation. The resulting CaTPP1 transgenic tobacco plants showed significantly increased cold stress resistance. It also appeared that some of the transgenic tobacco plants showed increased drought tolerance. The CaTPP1 transgenic plants showed no visible phenotypic alteration compared to wild type plants. These results showed the involvement of protein tyrosine phosphatase in tolerance of abiotic stresses including cold and drought stress.

Screening of salt-tolerance plants using transgenic Arabidopsis that express a salt cress cDNA library (Salt cress 유전자의 형질전환을 통한 내염성 식물체 선별)

  • Baek, Dongwon;Choi, Wonkyun;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Kim, Chanmin;Park, Hyeong Cheol;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Salt cress (Thellungiella halophila or Thellungiella parvula), species closely related to Arabidopsis thaliana, represents an extremophile adapted to harsh saline environments. To isolate salt-tolerance genes from this species, we constructed a cDNA library from roots and leaves of salt cress plants treated with 200 mM NaCl. This cDNA library was subsequently shuttled into the destination binary vector [driven by the cauliflower mosaic virus (CaMV) 35S promoter] designed for plant transformation and expression via recombination- assisted cloning. In total, 305,400 pools of transgenic BASTA-resistant lines were generated in Arabidopsis using either T. halophila or T. parvula cDNA libraries. These were used for functional screening of genes involved in salt tolerance. Among these pools, 168,500 pools were used for primary screening to date from which 7,157 lines showed apparent salt tolerant-phenotypes in the initial screen. A secondary screen has now identified 165 salt tolerant transgenic lines using 1,551 (10.6%) lines that emerged in the first screen. The prevalent phenotype in these lines includes accelerated seed germination often accompanied by faster root growth compared to WT Arabidopsis under salt stress condition. In addition, other lines showed non-typical development of stems and flowers compared to WT Arabidopsis. Based on the close relationship of the tolerant species to the target species we suggest this approach as an appropriate method for the large-scale identification of salt tolerance genes from salt cress.

effects of Sand Mulching on Forage Production in Newly Reclaimed Tidal Lands II. Studies on growth , dry matter accumulation and nutrient quality of selected forage crops grown on saline soils (간척지 사료작물 재배에 있어서 모래를 이용한 토양 mulching의 효과 II. 간척지 재배목초의 생육 및 건물축적형태와 사료가치에 관한 연구)

  • 김정갑;한민수
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 1990
  • A three year's field experiment was carried out on newly reclaimed tidal saline soils to evaluate the salt tolerance and growht characteristics, and their relationship to dry matter production and nutrient quality of main selected pasture species. Nine temperate grasses (14 varieties) and two forage crops (sorghum and pearl millet) were grown under different mulching treatments with medium sand and red-yellow soils (fine loamy materials of Typic Hapludults) from 1986 to 1988. Tall wheatgrass, tall fescue, reed canarygrass and alfalfa showed a good tolerance to soil salinity, especially tall wheatgrass (cv. Alkar) produced 19.6 ton/ha dry matter yield annualy under mulching treatment with medium sand depth in lcm. Pearl millet (cv. Gahi-3) was also evaluated as a salt tolerable forage species. Under salt stress in newly reclaimed tidal lands, plant showed a decrease in the assimirable leaf area (LA) as well as specific leaf area (SP. LA) and a low leaf weight ratio(LWR), and it resulted in a low concentration of crude protein and low digestible dry matter contents. Absorption of macro and micro elements in the plant on tidal lands was increased markedly.

  • PDF

Selection of Salt-Tolerant Silage Rice Through in vitro Screening and Saltol QTL Analysis (기내 선발과 Saltol QTL 분석을 통한 내염성 증진 사료용 벼 선발)

  • Cho, Chuloh;Kim, Kyung Hwa;Ahn, Eok-Keun;Park, Hyangmi;Choi, Man-Soo;Chun, Jaebuhm;Seo, Mi-Suk;Jin, Mina;Kim, Dool-Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.214-221
    • /
    • 2020
  • Salinity is one of the major abiotic stressors that inhibits the growth, yield, and productivity of crop plants. Therefore, it is necessary to develop crops with increased salt tolerance for cultivation in saline soils such as is found in reclaimed land. The objective of this study was to develop a salt-tolerant silage rice line that grows on reclaimed land. In order to develop this salt-tolerant silage rice, we transferred Saltol, a major QTL associated with salt tolerance, from IR64-Saltol, a salt-tolerant indica variety, into Mogyang, a susceptible elite japonica variety. To determine the effect of salt stress, Mogyang and IR64-Saltol cultivars were grown on a medium containing various concentrations of NaCl in in vitro conditions. Shoot length was found to decrease with increasing salt concentrations, and root growth was almost arrested at NaCl concentrations over 50 mM in the Mogyang cultivar. Based on these preliminary results, we screened five salt-tolerant lines showing superior growth under salt stress conditions. Polymerase chain reaction and sequencing results showed that the introgression types of Saltol QTL were derived from the IR64-Saltol cultivar in almost all selected lines. Based on the observed growth and physiological characteristics, the new Saltol introgression lines showed higher salt tolerance compared to the Mogyang parental cultivar. The salt-tolerant lines identified in this study could be used as a genetic resource to improve rice salt tolerance.

Comparative Expression of Stress Related Genes in Response to Salt-stressed Aspen by Real-time RT-PCR

  • Ku, Ja-Jung;Kim, Yong-Yul
    • Korean Journal of Plant Resources
    • /
    • v.21 no.3
    • /
    • pp.210-215
    • /
    • 2008
  • Gene-expression analysis is increasingly important in biological research, with real-time reverse PCR (RTPCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. However, this technique requires important preliminary work for standardizing and optimizing the many parameters involved in the analysis. Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive and reproducible measurements for specific mRNA sequence. Several genes are regulated in response to abitoic stresses, such as salinity, and their gene products function in stress response and tolerance. The design of the primers and TaqMan probes for real-time PCR assays were carried out using the Primer $Express^{TM}$ software 3.0. The PCR efficiency was estimated through the linear regression of the dilution curve. To understand the expression pattern of various genes under salt stressed condition, we have developed a unique public resource of 9 stress-related genes in poplar. In this study, real-time RT-PCR was used to quantify the transcript level of 10 genes (9 stress-related genes and 1 house keeping gene) that could play a role in adaptation of Populus davidiana. Real-time RT-PCR analyses exhibited different expression ratios of related genes. The data obtained showed that determination of mRNA levels could constitute a new approach to study the stress response of P. davidiana after adaptation during growth in salinity condition.

Physiological Response of Young Seedlings from Five Accessions of Diospyros L. under Salinity Stress

  • Wei, Ping;Yang, Yong;Fang, Ming;Wang, Fei;Chen, Hejie
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.564-577
    • /
    • 2016
  • Salinity stress limits plant cultivation in many areas worldwide; however, persimmon (Diospyros spp.) has high tolerance to salt. Five accessions of Diospyros [three of Diospyros lotus (accession numbers 824, 846, and 847); one of Diospyros kaki var. sylvestris (869); and one of Diospyros virginiana (844)] were chosen for analysis of salinity stress. We compared the effects of salt stress on plant growth, relative water content (RWC), malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide content ($H_2O_2$), and antioxidative enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; and ascorbate peroxidase, APX) in leaves of healthy potted seedlings from each of the five accessions after salt treatment for 25 days. Salt stress affected the growth of plants in all five accessions, with all three D. lotus accessions showing the most severe effect. Salt stress increased membrane lipid peroxidation in all accessions, but a stronger increase was observed in the three D. lotus accessions. Moreover, accumulation of $H_2O_2$ was faster in salt-sensitive D. lotus compared to salt-tolerant D. virginiana 844. The activities of all antioxidant enzymes increased in D. virginiana 844 and in D. kaki var. sylvestris 869; the activities of SOD, CAT, and APX were at similar levels in D. virginiana 844 and D. kaki var. sylvestris 869, but POD activity was stimulated to a greater extent in D. virginiana 844. The activities of all antioxidant enzymes (except POD) decreased in D. lotus 824 and increased (except for SOD) in D.lotus 846. The activities of SOD and APX decreased in D. lotus 847, whereas POD and CAT activities both increased. Relative water content decreased significantly in D. lotus. No significant changes in lipid peroxidation or relevant antioxidant parameters were detected in any of the accessions in controls treated with 0.0% NaCl. D. virginiana 844 had higher antioxidant capacity in response to salinity compared to other persimmon rootstocks. These results indicate that changes of these key physiological variables are related to salinity resistance in different accessions of persimmon.