• Title/Summary/Keyword: Sales Prediction

Search Result 148, Processing Time 0.021 seconds

A Study on the Effects of Advance and Discount Sales of Seasonal Products by Subscription on Logistics Costs (계절상품의 사전 예약판매가 물류비용에 미치는 영향에 관한 연구)

  • Kim, Byeongchan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.219-230
    • /
    • 2015
  • It is difficult to make plans about the production schedule and volume of seasonal products due to the huge uncertainty in the prediction of their demands, which is why the amounts of carryover seasonal products increase after the peak season. Traditional models fail to meet the important requirements of production and stock plans related to the enhanced efficiency of logistics system due to the reduced value of carryover products by the disposal based on large discounts and deterioration, which poses considerable difficulties with actual problem solving. This study examined the stages of product storage from the specialized factory warehouses during a low season through the stores and the warehouses of local distribution centers during a high season to stock disposal and carryover product warehouses after a high season. The study developed a model for logistics rationalization plans to minimize carryover products by advance selling new products by subscription during a low season in anticipation of high season demands, increasing the accuracy of demands prediction, and making stable production plans, as well as demonstrated its excellence through numerical analysis.

Analysis of Market Trajectory Data using k-NN

  • Park, So-Hyun;Ihm, Sun-Young;Park, Young-Ho
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • Recently, as the sensor and big data analysis technology have been developed, there have been a lot of researches that analyze the purchase-related data such as the trajectory information and the stay time. Such purchase-related data is usefully used for the purchase pattern prediction and the purchase time prediction. Because it is difficult to find periodic patterns in large-scale human data, it is necessary to look at actual data sets, find various feature patterns, and then apply a machine learning algorithm appropriate to the pattern and purpose. Although existing papers have been used to analyze data using various machine learning methods, there is a lack of statistical analysis such as finding feature patterns before applying the machine learning algorithm. Therefore, we analyze the purchasing data of Songjeong Maeil Market, which is a data gathering place, and finds some characteristic patterns through statistical data analysis. Based on the results of 1, we derive meaningful conclusions by applying the machine learning algorithm and present future research directions. Through the data analysis, it was confirmed that the number of visits was different according to the regional characteristics around Songjeong Maeil Market, and the distribution of time spent by consumers could be grasped.

A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand (수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구)

  • Ko, Jong-Min;Yang, Il-Kwon;Song, Jae-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

Monte Carlo Simulation of Plasma Caffeine Concentrations by Using Population Pharmacokinetic Model

  • Han, Sungpil;Cho, Yong-Soon;Yoon, Seok-Kyu;Bae, Kyun-Seop
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.677-687
    • /
    • 2017
  • Caffeine has a long history of human consumption but the consumption of caffeine due to caffeinated energy drinks(CEDs) is rapidly growing. Marketing targets of CED sales are children, adolescents and young adults, possibly caffeine-sensitive groups and its effect for them can be significantly different from healthy adults. Caffeine-related toxicities among these groups are growing in number and a number of countries are recognizing severity of caffeine toxicities. Previous research showed prediction of maximal plasma caffeine concentration profiles after the single CED ingestion and the primary aim of this study is to visually predict plasma caffeine concentration after the single and multiple ingestion of standard servings of CED. Based on the population pharmacokinetic model using Monte Carlo simulation, prediction of caffeine concentration leading to caffeine intoxication in the sensitive groups is quantitatively presented and visualized. This research also broadens the perspective by creating and utilizing diverse open science tools including R package, Edison Science App and Shiny apps.

  • PDF

Integration of Heterogeneous Models with Knowledge Consolidation (지식 결합을 이용한 서로 다른 모델들의 통합)

  • Bae, Jae-Kwon;Kim, Jin-Hwa
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.177-196
    • /
    • 2007
  • For better predictions and classifications in customer recommendation, this study proposes an integrative model that efficiently combines the currently-in-use statistical and artificial intelligence models. In particular, by integrating the models such as Association Rule, Frequency Matrix, and Rule Induction, this study suggests an integrative prediction model. Integrated models consist of four models: ASFM model which combines Association Rule(A) and Frequency Matrix(B), ASRI model which combines Association Rule(A) and Rule Induction(C), FMRI model which combines Frequency Matrix(B) and Rule Induction(C), and ASFMRI model which combines Association Rule(A), Frequency Matrix(B), and Rule Induction(C). The data set for the tests is collected from a convenience store G, which is the number one in its brand in S. Korea. This data set contains sales information on customer transactions from September 1, 2005 to December 7, 2005. About 1,000 transactions are selected for a specific item. Using this data set. it suggests an integrated model predicting whether a customer buys or not buys a specific product for target marketing strategy. The performance of integrated model is compared with that of other models. The results from the experiments show that the performance of integrated model is superior to that of all other models such as Association Rule, Frequency Matrix, and Rule Induction.

An Empirical Study on Prediction of the Art Price using Multivariate Long Short Term Memory Recurrent Neural Network Deep Learning Model (다변수 LSTM 순환신경망 딥러닝 모형을 이용한 미술품 가격 예측에 관한 실증연구)

  • Lee, Jiin;Song, Jeongseok
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.552-560
    • /
    • 2021
  • With the recent development of the art distribution system, interest in art investment is increasing rather than seeing art as an object of aesthetic utility. Unlike stocks and bonds, the price of artworks has a heterogeneous characteristic that is determined by reflecting both objective and subjective factors, so the uncertainty in price prediction is high. In this study, we used LSTM Recurrent Neural Network deep learning model to predict the auction winning price by inputting the artist, physical and sales charateristics of the Korean artist. According to the result, the RMSE value, which explains the difference between the predicted and actual price by model, was 0.064. Painter Lee Dae Won had the highest predictive power, and Lee Joong Seop had the lowest. The results suggest the art market becomes more active as investment goods and demand for auction winning price increases.

A Study on Disease Prediction of Paralichthys Olivaceus using Deep Learning Technique (딥러닝 기술을 이용한 넙치의 질병 예측 연구)

  • Son, Hyun Seung;Lim, Han Kyu;Choi, Han Suk
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.62-68
    • /
    • 2022
  • To prevent the spread of disease in aquaculture, it is a need for a system to predict fish diseases while monitoring the water quality environment and the status of growing fish in real time. The existing research in predicting fish disease were image processing techniques. Recently, there have been more studies on disease prediction methods through deep learning techniques. This paper introduces the research results on how to predict diseases of Paralichthys Olivaceus with deep learning technology in aquaculture. The method enhances the performance of disease detection rates by including data augmentation and pre-processing in camera images collected from aquaculture. In this method, it is expected that early detection of disease fish will prevent fishery disasters such as mass closure of fish in aquaculture and reduce the damage of the spread of diseases to local aquaculture to prevent the decline in sales.

An Application of Machine Learning in Retail for Demand Forecasting

  • Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.1-7
    • /
    • 2023
  • Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.

An Application of Machine Learning in Retail for Demand Forecasting

  • Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.210-216
    • /
    • 2023
  • Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.

Fashion Firm's Utilization of Fashion Information (패션기업의 패션정보 활용)

  • Jung, Song-Heang
    • Fashion & Textile Research Journal
    • /
    • v.6 no.6
    • /
    • pp.699-706
    • /
    • 2004
  • In today's fashion industry, directions for new products and high value added of fashion goods, product changes according to cycles, the shortening of life cycles, added value, planned obsolescence, and presentation is focused on fashion trends that will be selected by many consumers at the point of selling time. Therefore fashion information poses great importance and its weight is growing bigger everyday. Fashion information recognized to be important is reflected practically in the prediction of fashion changes in the fashion industry; especially, it is the first stage of the merchandising process that is the course of new product development. Presently, with some differences according to the size and specialized area of a firm, domestic fashion menufacturers obtain information from sales data of competing brands and their own, market information, consumer information based on primary data, shared fashion trend information given by domestic fashion information providing companies. Firms can not produce differentiated images and product concepts using such shared information. Although the types, importance and reflection of used information vary according to merchandising processes, all experts engaging in the merchandising of fashion products use the same shared information.