• 제목/요약/키워드: Saigo-Maeda operators

검색결과 5건 처리시간 0.026초

A Study of Marichev-Saigo-Maeda Fractional Integral Operators Associated with the S-Generalized Gauss Hypergeometric Function

  • Bansal, Manish Kumar;Kumar, Devendra;Jain, Rashmi
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.433-443
    • /
    • 2019
  • In this work, we evaluate the Mellin transform of the Marichev-Saigo-Maeda fractional integral operator with Appell's function $F_3$ type kernel. We then discuss six special cases of the result involving the Saigo fractional integral operator, the $Erd{\acute{e}}lyi$-Kober fractional integral operator, the Riemann-Liouville fractional integral operator and the Weyl fractional integral operator. We obtain new and known results as special cases of our main results. Finally, we obtain the images of S-generalized Gauss hypergeometric function under the operators of our study.

FRACTIONAL DIFFERENTIATION OF THE PRODUCT OF APPELL FUNCTION F3 AND MULTIVARIABLE H-FUNCTIONS

  • Choi, Junesang;Daiya, Jitendra;Kumar, Dinesh;Saxena, Ram Kishore
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.115-129
    • /
    • 2016
  • Fractional calculus operators have been investigated by many authors during the last four decades due to their importance and usefulness in many branches of science, engineering, technology, earth sciences and so on. Saigo et al. [9] evaluated the fractional integrals of the product of Appell function of the third kernel $F_3$ and multivariable H-function. In this sequel, we aim at deriving the generalized fractional differentiation of the product of Appell function $F_3$ and multivariable H-function. Since the results derived here are of general character, several known and (presumably) new results for the various operators of fractional differentiation, for example, Riemann-Liouville, $Erd\acute{e}lyi$-Kober and Saigo operators, associated with multivariable H-function and Appell function $F_3$ are shown to be deduced as special cases of our findings.

GENERALIZED FRACTIONAL DIFFERINTEGRAL OPERATORS OF THE K-SERIES

  • Gupta, Rajeev Kumar;Shaktawat, Bhupender Singh;Kumar, Dinesh
    • 호남수학학술지
    • /
    • 제39권1호
    • /
    • pp.61-71
    • /
    • 2017
  • In the present paper, we further study the generalized fractional differintegral (integral and differential) operators involving Appell's function $F_3$ introduced by Saigo-Maeda [9], and are applied to the K-Series defined by Gehlot and Ram [3]. On account of the general nature of our main results, a large number of results obtained earlier by several authors such as Ram et al. [7], Saxena et al. [14], Saxena and Saigo [15] and many more follow as special cases.

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED MODIFIED BESSEL FUNCTION OF THE SECOND KIND AND INTEGRAL TRANSFORMS

  • Purnima Chopra;Mamta Gupta;Kanak Modi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.755-772
    • /
    • 2023
  • Our aim is to establish certain image formulas of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) by employing the Marichev-Saigo-Maeda fractional calculus (integral and differential) operators including their composition formulas and using certain integral transforms involving (p, q)-extended modified Bessel function of the second kind Mν,p,q(z). Corresponding assertions for the Saigo's, Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) and Fox-Wright function rΨs(z).

SOME FRACTIONAL INTEGRAL FORMULAS INVOLVING THE PRODUCT OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Kim, Yongsup
    • 호남수학학술지
    • /
    • 제39권3호
    • /
    • pp.443-451
    • /
    • 2017
  • Very recently, Agarwal gave remakably a scads of fractional integral formulas involving various special functions. Using the same technique, we obtain certain(presumably) new fractional integral formulas involving the product of confluent hypergeometric functions. Some interesting special cases of our two main results are considered.