• 제목/요약/키워드: Sag ratio

검색결과 50건 처리시간 0.019초

솔라윙 시스템의 풍진동 특성 평가 (Evaluation of Aerodynamic Performance of Solar Wing System)

  • 김용철;윤성원
    • 한국공간구조학회논문집
    • /
    • 제16권1호
    • /
    • pp.65-72
    • /
    • 2016
  • Aerodynamic performance of solar wing system has been evaluated through wind tunnel test. The test model has 12 panels, each supported by 2 cables. The panels were installed horizontally flat, and gaps between panels were set constant. Sag ratios of 2% and 5%, and wind directions between $0^{\circ}$ and $90^{\circ}$ were considered. Mass of test model was determined considering the mass of full scale model, and Froude number and Elastic parameter were satisfied by adjusting the mean wind speed. From the wind tunnel test, it was found that the aerodynamic performance of the solar wing system is very dependent on the wind directions and sag ratios. When the sag was 2%, the fluctuating displacements between the wind directions of $0^{\circ}$ and $30^{\circ}$ increase proportionally to the square of the mean wind speed, implying buffeting-like vibration and a sudden increase in fluctuating displacement was found at large mean wind speed for the wind directions larger than $40^{\circ}$. When the wind direction was larger than $60^{\circ}$, a sudden increase was found both at low and large mean wind speed. When the sag ratio is 5%, distribution of mean displacements is different from that of sag ratio of 2%, and the fluctuating displacements show very different trend from that of sag ratio of 2%.

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

현수교의 중앙경간과 새그비에 따른 경관선호도와 이미지특성 분석 (Landscape Preference and Image Property according to Middle Span and Sag Ratio of the Suspension Bridge)

  • 장영주;손승녀;금기정;오흥운
    • 한국도로학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-11
    • /
    • 2011
  • 본 연구는 교량 중에 장대교량을 대표하는 현수교에 대한 설계 시 고려요소인 중앙경간과 새그비의 변화에 따른 경관선호도를 파악하고 경관선호도와 이미지요인과의 관계, 설계요소와 이미지요인과의 관계를 SD법을 적용하여 교량의 이미지 특성을 파악함으로써 경관적 환경을 조성할 수 있는 방안을 제시하는데 연구의 목적이 있다. 교량경관에 대한 경관적 선호도를 분석한 결과 교량의 중앙경간의 길이가 길어질수록 선호하는 새그비의 범위는 줄어드는 것으로 보아 중앙경간이 길어질수록 낮은 새그비를 선호하며, 중앙경간이 길어질수록 경관선호도가 높아짐을 알 수 있었다. 경관선호도와 이미지요인에서는 경관선호도가 높은 새그비의 속성에는 "안정성" "조형성" "심미성"과 모두(+)상관관계에 있지만 "조형성"의 영향이 미비하였다. 설계요소와 이미지 요인과의 관계에서는 중앙경간과 새그비의 요인에는 "안정성"이라는 요인과 더 관계되어 있었으며, 새그비가 낮아질수록 중앙경간이 길어질수록 "안정성"이 높게 평가되었다. 이 결과, 경관적으로 선호하는 이미지의 특성 중 "조형성"의 이미지 특성이 미비한 것으로 나타나 "조형성"의 이미지특성의 부각을 위해 중앙경간과 새그비의 비례요소가 아닌 균형과 대칭의 요소의 변화를 주어 보완실험을 하였다. 그 결과 3주탑현수교와 새그의 좌우대칭이 다른 현수교가 "조형성"의 이미지 특성이 더 부각되는 결과를 볼 수 있었고, 추후에 현수교의 경관설계를 할 때 비례요소뿐만 아니라 균형과 대칭의 요소도 고려하여 설계 시 반영하여야 할 것이다.

새그 비를 고려한 케이블 네트 구조물의 역학적 거동 (Mechanical Behavior of Cable Net Structures Considering Sag Ratio)

  • 박강근;이동우
    • 한국공간구조학회논문집
    • /
    • 제16권3호
    • /
    • pp.47-58
    • /
    • 2016
  • Cable network system is a flexible lightweight structure which curved cables can transmit only tensile forces. The weight of cable roof dramatically can reduce when the length becomes large. The cable network system is too flexible, most cable systems are stabilized by pretension forces. The tensile force of cable system is greatly influenced by the sag ratio and pretension forces. Determining initial sag ratio of cable roof system is essential in a design process of cable structures. Final sag ratio and pretension depends on initial installed sag and on proper handling during installation. The design shape of cable system has an affect on the sag and pretension, and must be determined using well-defined design philosophy. This paper is carried out the comparative data of the deflection and tensile forces on the geometric non-linear analysis of cable network systems according to sag ratio. The study of cable network system is provided to technical informations for the design of a large span cable roof, analytical results are compared with the results of other researchers. Structural nonlinear analysis of systems having cable elements is relatively complex than other rigid structural systems because displacements are large as a reason of flexibility, initial prestress is applied to cables in order to increase the rigidity, and then divergence of nonlinear analysis occurs rather frequently. Therefore, cable network systems do not exhibit a typical nonlinear behavior, iterative method that can handle geometric nonlinearities are necessary.

전 영역의 전압보상을 위한 단상 직렬형 Quasi Z-소스 전압 Sag-Swell 보상기 (Single-Phase Series Type Quasi Z-Source Voltage Sag-Swell Compensator for Voltage Compensation of Entire Region)

  • 엄준현;정영국;임영철
    • 전력전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.322-332
    • /
    • 2013
  • Conventional single-phase series quasi Z-source voltage compensator can not compensate for voltage sag less than 50% that frequently occurs in the industrial field. In this study, single-phase series quasi Z-source voltage sag-swell compensator which can compensate the voltage variation of entire range is proposed. The proposed system is composed of two quasi Z-source AC-AC converters connected in series with output terminal stage. Voltage sag less than 50% could be compensated by the intersection switching control of the upper converter duty ratio and of the upper converter duty ratio. Also the compensation voltage and its flowchart for each compensation mode are presented for entire sag-swell region. To confirm the validity of the proposed system, a DSP(DSP28335) controlled experimental system was manufactured. As a result, the proposed system could compensate for the voltage sag/swell of 20% and 60%. Finally, voltage compensation factor and THD(Total Harmonic Distortion) according to voltage variation and load change were measured, and voltage quality shows a good results.

자속구속형 초전도전류제한기의 권선비 변화에 따른 전류제한 및 전압강하 보상 특성 (Current Limiting and Voltage Sag Suppressing Characteristics of Flux-lock Type SFCL According to Variations of Turn Number's Ratio)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제24권5호
    • /
    • pp.410-415
    • /
    • 2011
  • In this paper, we investigated the fault current limiting and the load voltage sag suppressing characteristics of the flux-lock type SFCL, designed with the additive polarity winding, according to the variations of turn number's ratio and the comparative analysis between the resistive type and the flux-lock type SFCLs were performed as well. From the analysis for the short-circuit tests, the flux-lock type SFCL designed with the larger turn number's ratio was shown to perform more effective fault current limiting and load voltage sag suppressing operations compared to the flux-lock type SFCL designed with the lower turn number's ratio through the fast quench occurrence of the high-$T_C$ superconducting (HTSC) element comprising the flux-lock type SFCL. In addition, the recovery time of the flux-lock type SFCL after the fault removed could be confirmed to be shorter in case of the flux-lock type SFCL designed with the lower turn number ratio.

Cable sag-span ratio effect on the behavior of saddle membrane roofs under wind load

  • Hesham Zieneldin;Mohammed Heweity;Mohammed Abdelnabi;Ehab Hendy
    • Wind and Structures
    • /
    • 제36권3호
    • /
    • pp.149-160
    • /
    • 2023
  • Lightness and flexibility of membrane roofs make them very sensitive to any external load. One of the most important parameters that controls their behavior, especially under wind load is the sag/span ratio of edge cables. Based on the value of the pretension force in the edge cables and the horizontal projection of the actual area covered by the membrane, an optimized design range of cable sag/span ratios has been determined through carrying on several membrane form-finding analyses. Fully coupled fluid structure dynamic analyses of these membrane roofs are performed under wind load with several conditions using the CFD method. Through investigating the numerical results of these analyses, the behavior of membrane roofs with cables sag/span ratios selected from the previously determined optimized design range has been evaluated.

Design formulas for vibration control of sagged cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie F. Jr.;Ko, Jan-Ming;Dong, Shenghao
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.537-551
    • /
    • 2019
  • In this paper, a method for analyzing the damping performance of stay cables incorporating magnetorheological (MR) dampers in the passive control mode is developed taking into account the cable sag and inclination, the damper coefficient, stiffness and mass, and the stiffness of damper support. Both numerical and asymptotic solutions are obtained from complex modal analysis. With the asymptotic solution, analytical formulas that evaluate the equivalent damping ratio of the sagged cable-damper system in consideration of all the above parameters are derived. The main thrust of the present study is to develop an general design formula and a universal curve for the optimal design of MR dampers for adjustable passive control of sagged cables. Two sag-affecting coefficients are derived to reflect the effects of cable sag on the maximum attainable damping ratio and the optimal damper coefficient. For the cable configurations commonly used in cable-stayed bridges, the sag-affecting coefficients are directly expressed in terms of the sag-extensibility parameter to facilitate the control design. A case study on adjustable passive vibration control of the longest cable (536 m) on Stonecutters Bridge is carried out to demonstrate the influence of the sag for the damper design, and to figure out the necessity of adjustability of damper coefficients for achieving maximum damping ratio for different vibration modes.

변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 (Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding)

  • 고석철
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석 (Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils)

  • 임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.