• Title/Summary/Keyword: Safety of ships

Search Result 1,200, Processing Time 0.026 seconds

Empirical Analysis for Improvement of Safety Management of Coastal Passenger Ship - Focusing on Safety Practitioners - (연안여객선 안전관리 개선을 위한 실증 분석 - 안전관리 실무 종사자 중심으로 -)

  • Kang, Min-gu;Kim, Hwayoung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.511-518
    • /
    • 2019
  • This study aimed to extract the priority safety improvement factors for coastal passenger ships and analyze the perception gap between groups. To extract the improvement factors, we formed an expert group with maritime safety supervisors, passenger-ship safety inspectors (PSIs), and captains of passenger ships, and then conducted a Delphi survey. We found, using a hierarchy process, that the improvement factors were divided into three factors in Level 1 and ten factors in Level 2. For the relative importance analysis using the AHP (Analytic Hierarchy Process) model, we also formed two groups: an inspector group with maritime safety supervisors and PSIs, and an examinee group with safety managers, captains, and crews. Consequently, the factors of designation of public transportation for passenger ships and supporting the welfare of the crew were evaluated as the most important among the extracted factors. We conducted a t-test for the analysis of the perception gap between the two groups. Three perception gaps were found: increasing the inspection personnel, strengthening the qualification of the inspection personnel, and expanding the safety operation center. The result of this study will be useful for improving the safety policy of coastal passenger ships.

A Study on the Development of Safety Operation Guideline for Onboard A-Frame System Using Dynamic Simulation (동역학 시뮬레이션 기반 선박 A-Frame의 안전 운용 가이드 개발 연구)

  • Oh, Jae-Won;Kim, Hyung-Woo;Kwon, O-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.625-633
    • /
    • 2021
  • This paper considers the development of safety operation guideline for onboard A-Frame system used to operate heavy-work ROV using dynamic simulation. Onboard A-Frame is affected by ship's behavior and large inertia by the marine environment. For this reason, safety operation guidelines are required for the safety of workers who operate ship-mounted equipment. In order to develop a guideline, it is necessary to evaluate the safety loads through real sea experiment. However, simulation method is used instead since it is difficult to conduct experiments in sea. Therefore, a procedure for safety operation analysis based on dynamic simulation that can consider ship behavior and marine environment and a safety operation table were proposed in this study. And the construction of safety operation table and guide for safety operation using the applied load and safety factor analysis results were considered.

A Study on the Technical Strategy in the IMO Air Pollution Prevention (IMO의 대기오염규제에 따른 기술적 대응전략에 관한 연구)

  • 김종헌
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.S1
    • /
    • pp.77-85
    • /
    • 1996
  • As conservation of global environment has becoming a major outstanding issue of the world, the International Maritime Organization(IMO) has been legislation a convention for prevention of air pollution from ships. By the new convention, use of air pollutants such SOx, NOx, Freon and Halin Gas shall be restricted. In this regards, analysing these requirements of the convention is required as the cinvention will also be applied in restriction of descharging exhaust gases from ships by estsblishing a requirement of Sox and NOx discharged. The purpose of this study is as follows; 1) Introdcuing of the backgrounds of legislating the convention for prevention of air pollution from ships and major contents of the convention and a countermeasuures in the convention by Korea 2) Reviewing by analyzing the influence in domestic industries concernd by restriction of SOx, NOx in exhaust gases and sulpher content of fuel oil 3) Preparing a countermeasure in the convention properly.

  • PDF

A Study on the Collision and Grounding of Ships using HYDROCODE LS/DYNA3D (HYDROCODE LS/DYNA3D를 이용한 선박의 충돌 및 좌초에 관한 연구)

  • 이상갑;정영구
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • This paper describes a series of numerical simulations of colision between a 310, 000 DWT double hull VLCC (struck ship) and three 35, 000, 70, 000 and 105, 000 DWT tankers (striking ships) using LS/DYNA3D. Collisions are assumed to occur at the middle of the VLCC with the striking ships moving at right angle to the VLCC centerline. Striking ship speeds are varied to find a critical speed without failure of inner side shell, and the informations of collision force and absorption energy of each case are also reported. The validation of LS/DYNA3D in this study was made by comparing the result of numerical simulation of LS/DYNA3D with that of double hull tanker grounding experiment by the Carderock Division of Navla Surface Warfare Center (CDNSWC).

  • PDF

Merging of Satellite Remote Sensing and Environmental Stress Model for Ensuring Marine Safety

  • Yang, Chan-Su;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.645-652
    • /
    • 2003
  • A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. It lastly is shown that based on ship information extracted from JERS data, a qualitative evaluation method of environmental stress is introduced.