• 제목/요약/키워드: Safety of a Train

검색결과 1,079건 처리시간 0.028초

이종(異種) 열차제어시스템간의 상호운영성 시험 분석 (Analysis of Interoperability Test between a Different Kind of Train Control System)

  • 백종현;설남오
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제5권1호
    • /
    • pp.122-126
    • /
    • 2011
  • 본 논문에서는 세계적인 열차제어시스템의 발전 추세에 따라, 향후 국내 열차제어시스템의 개량 및 상호운용성을 확보하기 위한 목적으로 열차제어용 차상장치의 상호운용성을 확인하기 위한 시험의 결과에 대해 제시하고 있다. 안전이 최우선되는 철도시스템의 특성상 열차제어용 차상장치를 실제 열차에 설치하고 지상장치가 설치된 구간에서 시험 운행하는 것은 열차운행의 안전이 보장되지 못하기 때문에 열차제어시스템의 모의시험환경을 구성하여 시험하였다. 이를 위해 상호운용을 위한 열차제어용 차상장치의 송수신 데이터 체계를 확인하고 열차제어용 차상장치에 적용하여 상호운영성을 시험하였다.

직결궤도 체결구 하부에 발생한 단차가 차량/궤도 상호작용에 미치는 영향 (The Effect of Gaps in Concrete Bearing Surface of Direct Fixation Track on Vehicle and Track Interaction)

  • 양신추;김은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.50-57
    • /
    • 2010
  • Various installation faults may lie in fasteners in the construction of a direct-fixation track by the top-down method. At an extreme, they may cause excessive interaction between the train and track, compromise the running safety of the train, and cause damage to the track components. Therefore, the faults need to be kept within the allowable level through an investigation of their effects on the interactions between the train and track. In this study, the vertical dynamic stiffness of fasteners in installation faults was measured based on the dynamic stiffness test by means of an experimental apparatus that was devised to feasibly reproduce gap faults. This study proposes an effective analytical model for a train-track interaction system in which most elements, except the nonlinear wheel-rail contact and some components that behave bi-linearly, exhibit linear behavior. To investigate the effect of the behavior of fasteners in gap faults in a direct-fixation track on the vehicle and track, vehicle-track interaction analyses were carried out, targeting key review parameters such as the wheel load reduction factor, vertical rail displacement, rail bending stress, and mean stress of the elastomer. From the results, it was noted that the gap faults in the concrete bearing surface of a direct-fixation track need to be limited for the sake of the long-term durability of the elastomer than for the running safety of the train or the structural safety of the track.

  • PDF

The Development of Deceleration Determination Algorithm for Automatic Train Spacing

  • Baek, Jong-Hyen;Kim, Jong-Ki;Kim, Yong-Ku;Lee, Young-Hoon;Kim, Baek-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1689-1693
    • /
    • 2003
  • Communication based train control system is applied regularly worldwide. And this system may be used in domestic soon. Communication based train control system does not depend on conventional track circuit. Therefore, position and distance control of train to prevent collision with leading train may become important safety factor. This paper developed collision avoidance algorithm to control trains of several units efficiently for this. In developing a collision avoidance algorithm, it is desirable to avoid the need for additional system. Additional system restricts the development of the algorithm by limiting the effectiveness of the algorithm to only those areas where the additional system can be afforded and has been installed.

  • PDF

플로팅 슬래브궤도와 일반 콘크리트궤도 접속부에서의 열차 및 궤도의 거동 분석 (Analysis of Behavior of Train and Track at Transition Zone between Floating Slab Track and Conventional Concrete Slab Track)

  • 장승엽;양신추;박만호;조수익
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.379-384
    • /
    • 2009
  • It is of great importance to assure the running safety and ride comfort in designing the floating slab track for the mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety and ride comfort, and then, the behavior of train and track at the transition zone between the floating slab track and the conventional concrete slab track according to several main design variables such as spring constant, damping coefficient, spacing and arrangement of isolators and slab length, using the dynamic analysis technique considering the train-track interaction. The results of numerical analysis demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the vertical vibration acceleration of the train body, wheel-rail interaction force, rail bending stress and uplift force. The increase becomes higher with the decrease of the spring constant of isolators and the increase of the isolator spacing, but the damping ratio does not significantly affect the behavior of train and track at the transition. Therefore, to assure the running safety and ride comfort, simultaneously increasing the effectiveness of vibration isolation, it is effective to minimize the relative vertical offset between the floating slab and the conventional track slab by adjusting the spring constant and spacing of isolators at the transition.

  • PDF

열차제어 측면의 철도신호안전설비 개발방향 연구 (Direction of research on Railroad Signal Safety Facilities from the viewpoint of Train Control)

  • 김유호;이훈구;이수환;편선호;이영호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1270-1278
    • /
    • 2008
  • A great deal of development has been made in the field of railroad control in Korea. Like the recent High speed railroad (KTX) and the intercity light rail train (LRT) are being vigorously promoted. Therefore, in concert with the new railroad development projects, improved train control technics are being applied. Along with the focus on these newly developed advanced technologies the need for a reliable safety system for the safety of the passengers and railroad control personnel alike is being intensified. New safety facilities are continuously being developed in order to safely introduce and develop these new technologies. There is an urgent need for research and development of safety facilities for the implementation of the presently developed facilities as well as for the presently being used. Therefore, this research will study the safe operation of Korean railroad and the implementation situation of the class, functionality, ensured safety range etc. of the safety facilities for users and operators. In studying the material of the kinds of implemented safety facilities and technologies being used abroad we have researched into the most suitable direction of development of safety facilities for the Korean railroad environment.

  • PDF

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • 제17권2호
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

ATO 시스템 전동차의 ECO 운행패턴 적용에 관한 연구 (시뮬레이션 결과를 중심으로) (A Study on Application of ECO Driving Pattern of Electric Multiple Unit in ATO System (Focus on Simulation Results))

  • 김규중;이근오;김주용
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.6-13
    • /
    • 2013
  • This study focuses on finding ECO driving patterns which consider driving safety of the ATO system train and reliability and which optimize efficiency of the driving energy consumption. Research results derived by performing simulation of those 5 models show that the emergency braking which affects safety of passenger and the machinery is minimized, and safe driving speed is maintained by the prohibition of drastic acceleration/deceleration, coasting and constant-speed driving. Therefore if this result is applied to the urban railway train by amending or making ATO program to save energy usage that improve environmental quality, its effects as ECO driving pattern is huge.

하이브리드 복합재 철도차량 차체의 화재 안전성 평가연구 (A Study on the Fire Safety of a Hybrid Composite Train Carbody)

  • 김정석;이덕희;정우성;조세현
    • Composites Research
    • /
    • 제21권4호
    • /
    • pp.1-6
    • /
    • 2008
  • 본 논문에서는 탄소/에폭시 면재와 알루미늄 허니콤 심재를 갖는 바디와 스테인레스 언더프레임을 갖는 철도차량 차체에 대한 화재안전성평가 시험을 수행하였다. 이를 위해 실규모 차체를 제작하고 이를 이용하여 시험을 수행하였다. 시험에 적용된 차체는 내장재가 포함되지 않은 차체와 내장재를 포함을 차체 두가지를 이용하였으며 시험조건은 대구지하철 화재사고 시나리오에 근거하여 설정하였다. 시험결과 차체 및 내장재 표면의 최대온도는 각각의 발화온도에 미치지 못함을 확인하였고, 차체 내부에 화염전파도 발생하지 않았다.

한국형 고속전철의 350Km/h 주행에 대한 진동 가속도 분석 (Analysis of the Dynamic Vibration for Korean High Speed Train at Speed 350 Km/h)

  • 박찬경;김기환;목진용;김영국;김석원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.467-472
    • /
    • 2005
  • The characteristics of dynamic vibration are generally analyzed by an acceleration of a car body of high speed train and the acceleration can be applied to evaluation of running safety. The test of process and the analysis method about it are well explained on UIC Code 518 OR which is the spacial international standard about running safety and dynamic behavior on the line test for railway vehicle. Korean High Speed Train designed to operate at speed 350km/h has been tested on high speed line since it was developed in 2002 and it recorded the highest speed 352.4km/h at the 16th Dec. 2004 in Korea. This paper includes the analysis of running behavior of this train at speed 350km/h and also the analysis of dynamic safety is presented in it, extending to the range of high speed while the UIC 518 limit the speed below 200km/h.

  • PDF

기존선 속도 향상을 위한 발리스를 이용하는 열차간격제어 기술에 대한 연구 (The Study on Train Separation Control Technology using Balise for Conventional Line Speed Up)

  • 백종현;이창구
    • 한국산학기술학회논문지
    • /
    • 제10권2호
    • /
    • pp.256-263
    • /
    • 2009
  • 한국철도공사에서는 기존선의 신호시스템을 지상의 ATS 시스템에 의한 신호 현시에 따라 운전자가 제한속도 이내로 열차를 운전하던 방식에서 지상의 발리스로부터 이동권한을 전송받아 차상신호시스템(ATP)에서 Speed Profile을 생성하여 운전하는 Bombardier Transport사의 ATP 시스템으로 개량하고 있다. 한국철도기술연구원에서는 기존선의 속도 향상을 위해 틸팅열차를 개발하여 10만 km 주행시험 중이며, 중앙선에 투입이 가시화되고 있다. 이러한 틸팅열차를 ATP 시스템에 의해 운전할 때 곡선구간에서 현재 제한되어지고 있는 곡선부 통과 속도를 증속하는 것이 쉽지 않은 형편이다. 따라서 향후 ATP 시스템의 국산화 개발이 이루어질 것을 대비하여 선행적으로 ATP 시스템의 핵심 기술인 선행열차에 따른 후행열차의 안전제동모델 및 열차간격제어 기술을 연구 개발할 필요성이 있다. 본 논문에서는 이를 위하여 발리스를 이용하는 ATP 시스템의 안전제동모델 및 열차간격제어 기술을 개발하고 그 성능을 시뮬레이션 하였다.