• Title/Summary/Keyword: Safety integrity level

Search Result 158, Processing Time 0.039 seconds

Secure methodology of the Autocode integrity for the Helicopter Fly-By-Wire Control Law using formal verification tool (정형검증 도구를 활용한 Fly-By-Wire 헬리콥터 비행제어법칙 자동코드 무결성 확보 방안)

  • An, Seong-Jun;Cho, In-Je;Kang, Hye-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.398-405
    • /
    • 2014
  • Recently the embedded software has been widely applied to the safety-critical systems in aviation and defense industries, therefore, the higher level of reliability, availability and fault tolerance has become a key factor for its implementation into the systems. The integrity of the software can be verified using the static analysis tools. And recent developed static analysis tool can evaluate code integrity through the mathematical analysis method. In this paper we detect the autocode error and violation of coding rules using the formal verification tool, Polyspace(R). And the fundamental errors on the flight control law model have been detected and corrected using the formal verification results. As a result of verification process, FBW helicopter control law autocode can ensure code integrity.

Study on Development of Inter-acceptability Requirements of System Safety (시스템안전의 상호수용에 대한 요구사항 도출 연구)

  • Shin, Duc-Ko;Kim, Gon-Yop;Oh, Seh-Chan;Yoon, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.707-710
    • /
    • 2011
  • System safety is defined as the state where the hazard risks due to internal system, interface, operation and maintenance are controlled as acceptable levels. It is represented and evaluated either with the risk level of each risk factor with the consideration of operation environments or with Safety Integrity Level (SIL) which is the system functional safety without considering application environments. The assessment results are issued in forms of certificates and they are reused in many cases. However, the conditions and restrictions for different application environments vary in each case, therefore, additional evaluation on the preconditions of assessment in comparison with the actual application environment must be carried out. For the area of train control, TR 50506-1 has been established based on the IEC 62425 (international standard for safety of train control system by RSSB) and EN 50129 (Europe standard) for the further assessment. In this paper, the analysis on TR 5056-1 has been conducted in depth. The purpose of the study is to determine the requirements for inter-acceptability including scope, procedures, principles, examination and suitability. The results can be utilized for the system safety maintenance when new devices or components are introduced in conventional systems.

  • PDF

A Study on the SIL Allocation and Demonstration for Train Control System (열차제어시스템 SIL할당 및 입증에 관한 연구)

  • Shin, Duc-Ko;Baek, Jong-Hyen;Lee, Kang-Mi;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.855-859
    • /
    • 2009
  • In this paper, we introduce the estimation method by Risk or SIL(Safety Integrity Level) for the criterion of safety assurance and summarize each application method and target. IEC 62278(EN 50126) which is international standard for the specification and verification of the railway system RAMS indicate a criterion of safety assurance. Especially, it recommend the safety verification by continuous verification as the order of requirement establishment, design, manufacture, installation, operation, and maintenance for the equipment not easy to quantify the operation environment. In this paper, we study the SIL requirement allocation method relating to internal new system development and existing system improvement by analysing SIL recommendations which were used to understand SIL for a train control equipment in 1990s in IRSE and theoretically their allocation background. This paper help the safety management of Korea train control system to develope the quantitative management procedure as international level by analyzing the SIL requirement allocation by operation agency and the right SIL verification procedure by manufacture and indicating the example to assure safety because it is necessary for improvement and localization for the Korea train control system having highly dependence on aboard technology.

  • PDF

A Study on Safety Assessment of CTC/EI Interface (열차집중제어장치와 전자연동장치 인터페이스의 안전성평가에 관한 연구)

  • SHIN Seok-kyun;LEE Key-seo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.309-316
    • /
    • 2005
  • In this paper we analyzed a dangerous failure and a safety requirement based on HIA (Hazard Identification and Analysis) of an interface model between CTC (Centralized Traffic Control) system and El (Interlocking) system, and assigned SU (Safety Integrity Level) by way of an risk estimation of the interface, which employed PHA (Preliminary Hazard Analysis) for the interface of the track control system, being managed as separated system between the centralized traffic control system and the interlocking system, An estimation which satisfies a safety reference of the international standard has been achieved through a quantification of the system failure rate and the dangerous failure rate of the interface model.

Railway Software Analysis Tool using Symbolic Execution Method (심볼릭 수행 방법을 이용한 철도 소프트웨어 코드분석 도구제안)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Shin, Duck-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.242-249
    • /
    • 2016
  • The railway system is being converted to the computer system from the existing mechanical device, and the dependency on software is being increased rapidly. Though the size and degree of complexity of software for railway system are slower than the development speed of hardware, it is expected that the size will be grown bigger gradually and the degree of complexity will be increased also. Accordingly, the validation of reliability and safety of embedded software for railway system was started to become influential as the important issue. Accordingly, various software test and validation activities are highly recommended in the international standards related railway software. In this paper, we presented a software coding analysis tool using symbolic execution for railway system, and presented its result of implementation.

A Study on FMEDA Process for SIL Certification : A Case Study of a Flame Scanner (SIL 인증을 위한 FMEDA 프로세스 연구 : 화염검출기 사례를 중심으로)

  • Kim, Sung Kyu;Kim, Yong Soo
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.422-430
    • /
    • 2012
  • In this article, we introduced the estimation method by 'Safety Integrity Level'(SIL) for the criterion of safety assurance and performed a case study on a flame scanner. SIL requires probabilistic evaluation of each set of equipment used to reduce risk in a safety related system. FMEDA(Failure Modes, Effects and Diagnostic Analysis) method is widely used to evaluate the safety levels and provides information on the failure rates and failure mode distributions necessary to calculate a diagnostic coverage factor for a part or a component. Basically, two parameters resulting from FMEDA are used for SIL classification of the device : SFF(Safe Failure Fraction) and PFD(Probability of Failure on Demand). In this case study, it is concluded that the flame scanner is designed to fulfill the condition of SIL 3 in the aspect of SFF and PFD.

A study on the statistical analysis and implications cases of obtaining international safety certification in safety critical railway products (안전성 중시 철도제품의 국제인증 획득 사례를 통한 통계적 분석 및 시사점에 관한 연구)

  • Choi, Yo Chul
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.114-121
    • /
    • 2021
  • Today, it is a time when self-help efforts are being made to increase the demand for international certification by domestic and foreign railway orderers and develop excellent railway systems for railway system and railway construction projects. Since 2011, cases of obtaining international certification related to the domestic railway system/products have been collected and analyzed through literature and Internet data and based on the analysis results, evaluation results on the acquisition of international certification in Korea are presented. Through these results, the government, research institutes, and industries will be practical reference materials for international certification-related work.

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

State of the Art on GNSS Reflectometry and Marine Applications (위성신호 반사계측(GNSS-R) 기술 현황과 해양 응용분야)

  • Seo, Kiyeol;Park, Sang-Hyun;Park, Jihye
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.402-408
    • /
    • 2021
  • GNSS-Reflectometry (GNSS-R) is a technique for measuring and analyzing signals transmitted from satellites, reflecting on the surface of land or sea. GNSS-R is mainly used for measuring the water level variation, typhoon and meteorological anomaly, soil moisture, and snow depth. This paper describes the concept and measurement principle of GNSS-R technology, especially focusing on the field of marine utilization and its feasibility. In particular, it presents the applications of this technique for monitoring the safety of marine environment as well as the marine vessel and their utilization areas based on currently available infrastructure on the ground and maritime reference stations, such as the existing differential GNSS reference stations and integrity monitors (DGNSS RSIM), and GNSS reference station infrastructure, using the ground-based and the satellite-based GNSS-R approaches.

Leak Before Break Evaluation of Surge Line by Considering CPE under Beyond Design Basis Earthquake (설계초과지진시 CPE를 고려한 밀림관 파단전누설 평가)

  • Seung Hyun Kim;Youn Jung Kim;Han-geol Lee;Sun Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Nuclear Power Plants (NPP) should be designed to have sufficient safety margins and to ensure seismic safety against earthquake that may occur during the plant life time. After the 9.12 Gyeongju earthquake accident, the structural integrity of nuclear power plants due to the beyond design basis earthquake is one of key safety issues. Accordingly, it is necessary to conduct structural integrity evaluations for domestic NPPs under beyond design basis earthquake. In this study, the Level 3 LBB (Leak Before Break) evaluation was performed by considering the beyond design basis earthquake for the surge line of a OPR1000 plant of which design basis earthquake was set to be 0.2g. The beyond design basis earthquake corresponding to peak ground acceleration 0.4g at the maximum stress point of the surge line was considered. It was confirmed that the moment behaviors of the hot leg and pressurized surge nozzle were lower than the maximum allowable loading in moment-rotation curve. It was also confirmed that the LBB margin could be secured by comparing the LBB margin through the Level 2 method. It was judged that the margin was secured by reducing the load generated through the compliance of the pipe.