• Title/Summary/Keyword: Safety instrumented system

Search Result 34, Processing Time 0.027 seconds

A PORTABLE TORQUE AND POWER MEASUREMENT SYSTEM FOR SMALL FARM EQUIPMENT BASED ON AN INSTRUMENTED PULLEY

  • Pasikatan, M.C.;Quick, G.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.298-306
    • /
    • 1993
  • A portable torque and power measurement system for small farm equipment based on instrumented pulley was developed. The prototype pulley was machined from mild steel, with spokes serving as strain beams. Strain gages mounted to the spokes sense the bending strain due to the torque and convert this into millivolt output. Calibration results showed the torque-millivolt relationship was linear, while hysterisis and error were less than 1% fs. For power measurements, an additional tachmeter with dcvoltage output is necessary. With the tachometer , error in power measurement was +-1.03W or 0.2% fs. Field tests showed that for ease of installation, no machine alteration needed and safety, this system had advantage over other methods for small farm equipment.

  • PDF

A Study on the Improvement of Preventive Measures for Improving the Safety of Chemical Reactor (화학반응기의 안전성 향상을 위한 예방조치 개선에 관한 연구)

  • Byun, Yoon Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.32-38
    • /
    • 2020
  • Based on the cases of fire and explosion accident in the chemical reactor, thr problems of preventive measures installed in the chemical reactor were analyzed. The chemical reactors produce a variety of chemicals and install rupture disk to relieve the pressure that rises sharply in the event of a runaway reaction. In order to maintain the function of the rupture disk, the emissions was allowed to be discharged into the atmosphere, resulting in fire and explosion accidents. As a way to improve this, safety instrumented system based on the safety integrity level(SIL3) was applied as a preventive measures for chemical reactor. Two emergency shur-off valves are installed in series on pipe dropping raw materials for chemical reactor so that the supply of raw materials can be cut off even if only one of the two emergency shut-off valves is operated during the runaway reaction. The automatic on/off valve is installed in parallel in the supply pipe of the reaction inhibitor so that the reaction inhibitor can be injected even if only one valve is opened at the time of the runaway reaction.

Towards the Application of Safety Integrity Level for Improving Process Safety (공정안전향상을 위한 Safety Integrity Level의 적용 방향)

  • Kwon, Hyuck-Myun;Park, Hee-Chul;Chun, Young-Woo;Park, Jin-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • The concept of SIL is applied in the most of all standards relating to functional system safety. However there are problems for the people to apply SIL to their plants. as these standards don't include sufficient informations. In this regards, this paper will suggest the direction of SIL application and concept based on IEC 61508 and IEC 61511. A Safety Integrity Level(SIL) is the discrete level(one out of possible fours), corresponding to a range of the probability of an E/E/PE (Electric/Electrical/Programmable Electrical) safety-related system satisfactorily performing the specific safety functions under all the stated conditions within a stated period of time. SIL can be divided into the target SIL(or required SIL) and the result SIL. The target SIL is determined by the risk analysis at the analysis phase of safety lifecycle and the result SIL is calculated during SIL verification at the realization phase of safety lifecycle. The target SIL is determined by the risk analysis like LOPA(Layer Of Protection Analysis), Risk Graph, Risk Matrix and the result SIL is calculated by HFT(Hardware Fault Tolerance), SFF(Safe Failure Fraction) and PFDavg(average Probability of dangerous Failure on Demand). SIL is applied to various areas such as process safety, machinery(road vehicles, railway application, rotating equipment, etc), nuclear sector which functional safety is applied. The functional safety is the part of the overall safety relating to the EUC and the EUC control system that depends on the correct functioning of the E/E/PE safety-related systems and other risk reduction measures. SIL is applied only to the functional safety of SIS(Safety Instrumented System) in safety. EUC is the abbreviation of Equipment Under Control and is the equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities.

Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide (과산화수소 농축을 위한 투과증발공정의 정량적 위험성 분석)

  • Jung, Ho Jin;Yoon, Ik Keun;Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.750-754
    • /
    • 2014
  • Quantitative risk analysis has been performed for a pervaporation process for production of high test peroxide. Potential main accidents are explosion and fire caused by a decomposition reaction. As the target process has a laboratory scale, the consequence is considered to belong to Category 3. An event tree has been developed as a model for occurrence of a decomposition reaction in the target process. The probability functions of the accident causes have been established based on the frequency data of similar events. Using the constructed model, the failure rate has been calculated. The result indicates that additional safety devices are required in order to achieve an acceptable risk level, i.e. an accident frequency less than $10^{-4}/yr$. Therefore, a layer of protection analysis has been applied. As a result, it is suggested to introduce inherently safer design to avoid catalytic reaction, a safety instrumented function to prevent overheating, and a relief system that prevents explosion even if a decomposition reaction occurs. The proposed method is expected to contribute to developing safety management systems for various chemical processes including concentration of hydrogen peroxide.

Behavior of a combined piled raft foundation in a multi-layered soil subjected to vertical loading

  • Bandyopadhyay, Srijit;Sengupta, Aniruddha;Parulekar, Y.M.
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.379-390
    • /
    • 2020
  • The behavior of a piled raft system in multi-layered soil subjected to vertical loading has been studied numerically using 3D finite element analysis. Initially, the 3D finite element model has been validated by analytically simulating the field experiments conducted on vertically loaded instrumented piled raft. Subsequently, a comprehensive parametric study has been conducted to assess the performance of a combined piled raft system in terms of optimum pile spacing and settlement of raft and piles, in multi-layered soil stratum subjected to vertical loading. It has been found that a combined pile raft system can significantly reduce the total settlement as well as the differential settlement of the raft in comparison to the raft alone. Two different arrangements below the piled raft with the same pile numbers show a significant amount of increase of load transfer of piled raft system, which is in line with the load transfer mechanism of a piled raft. A methodology for the factor of safety assessment of a combined pile raft foundation has been presented to improve the performance of piled raft based on its serviceability requirements. The findings of this study could be used as guidelines for achieving economical design for combined piled raft systems.

Deformation Behaviors of Temporary Tieback Wall during Excavation Works (현장계측과 수치해석을 이용한 가설 흙막이 구조물의 변형특성 연구)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 1995
  • During excavation works for underground facilities, temporary tieback wall with earth anchor system was investigated for safety's sake. An excavation 9.7 meter deep was monitored by slope inclinometer in twelve measuring points. Instrumented lateral displacements of the wall during 177 days are represented. Especially, lateral displacements of the two positions under completely different condition are compared to investigate the effect of backfilling between soldier pile and the soil behind wall. The deformation behaviors of the wall according to both depth and elasped time are discussed. Finally, a numerical analysis by the program FLAC was performed, and calculated displacements are compared to measured ones.

  • PDF

A Study on the Achievement of Required Safety Integrity Level to Reduce Risk for SMR On-Site Hydrogen Refueling Stations (개질형 On-Site 수소충전소의 리스크 감소를 위해 요구되는 SIL 등급 달성 방안에 관한 연구)

  • Lee, Jin Ho;Lim, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • In recent years, hydrogen has received much attention as an alternative energy source to fossil fuels. In order to ensure safety from the increasing number of hydrogen refueling stations, prevention methods have been required. In this regard, this study suggested an approach to reduce the risk of hydrogen refueling station by increasing Safety Integrity Level (SIL) for a Steam Methane Reformer (SMR) in On-Site Hydrogen Refueling Station. The worst scenario in the SMR was selected by HAZOP and the required SIL for the worst scenario was identified by LOPA. To verify the required SIL, the PFDavg.(1/RRF) of Safety Instrumented System (SIS) in SMR was calculated by using realistic failure rate data of SIS. Next, several conditions were tested by varying the sensor redundancy and proof test interval reduction and their effects on risk reduction factor were investigated. Consequently, an improved condition, which were the redundancy of two-out-of-three and the proof test interval of twelve months, achieved the tolerable risk resulting in the magnitude of risk reduction factor ten times greater than that of the baseline condition.

Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Chen, B.;Han, J.P.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1087-1105
    • /
    • 2016
  • Traffic load and volume is one of the most important physical quantities for bridge safety evaluation and maintenance strategies formulation. This paper aims to conduct the statistical analysis of traffic volume information and the multimodal modeling of gross vehicle weight (GVW) based on the monitoring data obtained from the weigh-in-motion (WIM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. A genetic algorithm (GA)-based mixture parameter estimation approach is developed for derivation of the unknown mixture parameters in mixed distribution models. The statistical analysis of one-year WIM data is firstly performed according to the vehicle type, single axle weight, and GVW. The probability density function (PDF) and cumulative distribution function (CDF) of the GVW data of selected vehicle types are then formulated by use of three kinds of finite mixed distributions (normal, lognormal and Weibull). The mixture parameters are determined by use of the proposed GA-based method. The results indicate that the stochastic properties of the GVW data acquired from the field-instrumented WIM sensors are effectively characterized by the method of finite mixture distributions in conjunction with the proposed GA-based mixture parameter identification algorithm. Moreover, it is revealed that the Weibull mixture distribution is relatively superior in modeling of the WIM data on the basis of the calculated Akaike's information criterion (AIC) values.

Distributed optical fiber sensors for integrated monitoring of railway infrastructures

  • Minardo, Aldo;Coscetta, Agnese;Porcaro, Giuseppe;Giannetta, Daniele;Bernini, Romeo;Zeni, Luigi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • We describe the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured statically and dynamically along 60 meters of rail track, as well as along a 3-m stone arch bridge. We show that, gluing an optical fiber along the rail track, traffic monitoring can be performed in order to identify the train passage over the instrumented sector and determine its running conditions. Furthermore, dynamic and static strain measurements on a rail bridge are reported, aimed to detect potential structural defects. The results indicate that distributed sensing technology represents a valuable tool in railway traffic and safety monitoring.

Mechanical Characteristics of Automobile Brake Pads (자동차 브레이크 패드의 기계적 특성 연구)

  • Shin, Jaeho;Kim, Kyungjin;Kang, Woojong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Brake pads are a component of disc brake system of automobile and consist of steel backing plates and friction material facing the disk brake rotor. Due to the repeated sliding forces and torque in vehicle braking, friction performance of brake pads are ensured. Futhermore, the brake pad is one of major tuning components in aftermarket, mechanical characteristics of the brake pad are necessary to evaluate for establishing the certification standards of tuning components. This study had performed the five specimen tests for friction coefficients and wear loss rates according to the SAE test specification. Using the instrumented indentation method, yield strength and tensile strength were measured. Friction coefficients, 0.386 - 0.489, and wear loss rates, 1.0% - 3.7% are obtained. The range of yield strength and tensile strength are 21.4 MPa - 105.3 MPa and 39.5 MPa - 176.4 MPa respectively.