• 제목/요약/키워드: Safety function analysis

검색결과 1,004건 처리시간 0.024초

원자력발전소 비상운전 직무의 인간오류분석 및 평가 방법 AGAPE-ET의 개발 (AGAPE-ET: A Predictive Human Error Analysis Methodology for Emergency Tasks in Nuclear Power Plants)

  • 김재환;정원대
    • 한국안전학회지
    • /
    • 제18권2호
    • /
    • pp.104-118
    • /
    • 2003
  • It has been criticized that conventional human reliability analysis (HRA) methodologies for probabilistic safety assessment (PSA) have been focused on the quantification of human error probability (HEP) without detailed analysis of human cognitive processes such as situation assessment or decision-making which are crticial to successful response to emergency situations. This paper introduces a new human reliability analysis (HRA) methodology, AGAPE-ET (A guidance And Procedure for Human Error Analysis for Emergency Tasks), focused on the qualitative error analysis of emergency tasks from the viewpoint of the performance of human cognitive function. The AGAPE-ET method is based on the simplified cognitive model and a taxonomy of influencing factors. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of PIFs on the cognitive function. Then, overall human error analysis process is designed considering the cognitive demand of the required task. The application to an emergency task shows that the proposed method is useful to identify task vulnerabilities associated with the performance of emergency tasks.

Typology of ROII Patterns on Cluster Analysis in Korean Enterprises

  • Kim, Young Sun;Kwon, Oh Jun;Kim, Ki Sik;Rhee, Kyung Yong
    • Safety and Health at Work
    • /
    • 제3권4호
    • /
    • pp.278-286
    • /
    • 2012
  • Objectives: Authors investigated the pattern of the rate of occupational injuries and illnesses (ROII) at the level of enterprises in order to build a network for exchange of experience and knowledge, which would contribute to workers' safety and health through safety climate of workplace. Methods: Occupational accidents were analyzed at the manufacturing work site unit. A two step clustering process for the past patterns regarding the ROII from 2001 to 2009 was investigated. The ROII patterns were categorized based on regression analysis and the patterns were further divided according to the subtle changes with Mahalanobis distance and Ward's linkage. Results: The first clustering of ROII through regression analysis showed 5 different functions; 29 work sites of the linear function, 50 sites of the quadratic function, 95 sites of the logarithm function, 62 sites of the exponential function, and 54 sites of the sine function. Fourteen clusters were created in the second clustering. There were 3 clusters in each function categorized in the first clustering except for sine function. Each cluster consisted of the work sites with similar ROII patterns, which had unique characteristics. Conclusion: The five different patterns of ROII suggest that tailored management activities should be applied to every work site. Based on these differences, the authors selected exemplary work sites and built a network to help the work sites to share information on safety climate and accident prevention measures. The causes of different patterns of ROII, building network and evaluation of this management model should be evaluated as future researches.

A Study of Software Hazard Analysis for Safety Critical Function in Military Aircraft

  • Oh, Hung-Jae;Hong, Jin-Pyo
    • 전기전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.145-152
    • /
    • 2012
  • This paper is the Software Hazard Analysis (SWHA) which will study the managerial process and the technical methode and techniques inherent in the performance of software safety task within the Military Aircraft System Safety program. This SWHA identifies potential hazardous effects on the software intensive systems and provides a comprehensive and qualitative assessment of the software safety. The purpose of this paper is to identify safety critical functions of software in Military A/C. The identified software hazards associated with the design or function will be evaluated for risks and operational constraint to further improve the software design requirement, analysis and testing efforts for safety critical software. This common SWHA, the first time analysis in KOREA, was review all avionics OFP(Operational Flight Program), and focus only on software segments which are safety critical. This paper provides a important understanding between the customer and developer as to how the software safety for the Military A/C will be accomplished. It will also provide the current best solution which may as one consider the necessary step in establishing a credible and cost-effective software safety program.

제품기능분석을 이용한 설계지원 방법론 개발 (- Development of Design Support Methodology Using Product Function Analysis -)

  • 김형준;이내형;서광규
    • 대한안전경영과학회지
    • /
    • 제5권2호
    • /
    • pp.111-127
    • /
    • 2003
  • In this paper, a new method of product function analysis is presented to categorize various design information generated in product development processes. In order to improve product functions, designers must understand unit functions and modified parts of products. The product function analysis (PFA) is based on the designer's understanding of product functions. The proposed PFA provides the methodology to classify the various functions systematically and understand the relation between functions easily. Using this approach, efficient design support system can be developed and used for designers to support decision-making with design knowledge.

고체추진제의 연소응답함수에 대한 연구 (A Study on the Combustion Response Function of the Solid-Propellant)

  • 윤재건
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.137-141
    • /
    • 1998
  • The combustion instability of a rocket motor can be predicted by the linear stability analysis. The most important input data in this analysis is the combustion response function of the solid propellant. In many cases, it is very difficult to measure the function. But, in that case, the combustion response function can be theoretically evaluated by properties of the propellant. In this study, the theoretical values were compared with measured values by T-burner. Data are relatively so well agreed that theoretical values are enough to be used in linear stability analysis of the rocket motor using a newly developed propellant.

  • PDF

Safety analysis to derive safety requirement in the railway system

  • Joung, Eui-Jin;Shin, Kyung-Ho;Kim, Yong-Gyu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.383-386
    • /
    • 2006
  • The safety of the railway system is important because the system is a mass transit system and the results of the accident are inconceivable. The railway system is operated by train operation system such as train control system. So the train control system requires safety critical characteristics. In the European railway, ETCS (European Train Control System) project has been finished to accomplish the interoperability of each national railway signaling system. According to the interoperability degree, ETCS levels are suggested. As the highest level, ETCS level 3 suggests a radio communication. Also recently urban railway system is operated by driverless and automatic train control system. In this circumstance, more safety is required than before in the railway system. In order to accomplish the safety of a system, the requirements considering safety have to be suggested. The requirement is a set of several functions such as general function, environment, safety etc. For the safety critical system, safety function is more important than any other functions. The safety functions are deduced by safety analysis. In order to perform the safety analysis, the system hazards have to be identified and then risk analysis for each hazard should be performed. The risk is related to the frequency and the severity of each hazard. And then countermeasures for each risk have to be prepared. The summary of the countermeasures is about a kind of safety functions in a system. In this paper, the safety functions for a train control system are presented according to the above procedure.

  • PDF

비선형 회귀분석을 이용한 Generic 데이터 기반의 누출빈도함수 추정 (Estimation of Leak Frequency Function by Application of Non-linear Regression Analysis to Generic Data)

  • 윤익근;단승규;정호진;홍성경
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.15-21
    • /
    • 2020
  • Quantitative risk assessment (QRA) is used as a legal or voluntary safety management tool for the hazardous material industry and the utilization of the method is gradually increasing. Therefore, a leak frequency analysis based on reliable generic data is a critical element in the evolution of QRA and safety technologies. The aim of this paper is to derive the leak frequency function that can be applied more flexibly in QRA based on OGP report with high reliability and global utilization. For the purpose, we first reviewed the data on the 16 equipments included in the OGP report and selected the predictors. And then we found good equations to fit the OGP data using non-linear regression analysis. The various expectation functions were applied to search for suitable parameter to serve as a meaningful reference in the future. The results of this analysis show that the best fitting parameter is found in the form of DNV function and connection function in natural logarithm. In conclusion, the average percentage error between the fitted and the original value is very small as 3 %, so the derived prediction function can be applicable in the quantitative frequency analysis. This study is to contribute to expand the applicability of QRA and advance safety engineering as providing the generic equations for practical leak frequency analysis.

Development of ISO 26262 based Requirements Analysis and Verification Method for Efficient Development of Vehicle Software

  • Kyoung Lak Choi;Min Joong Kim;Young Min Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.219-230
    • /
    • 2023
  • With the development of autonomous driving technology, as the use of software in vehicles increases, the complexity of the system increases and the difficulty of development increases. Developments that meet ISO 26262 must be carried out to reduce the malfunctions that may occur in vehicles where the system is becoming more complex. ISO 26262 for the functional safety of the vehicle industry proposes to consider functional safety from the design stage to all stages of development. Specifically at the software level, the requirements to be complied with during development and the requirements to be complied with during verification are defined. However, it is not clearly expressed about specific design methods or development methods, and it is necessary to supplement development guidelines. The importance of analysis and verification of requirements is increasing due to the development of technology and the increase of system complexity. The vehicle industry must carry out developments that meet functional safety requirements while carrying out various development activities. We propose a process that reflects the perspective of system engineering to meet the smooth application and developmentrequirements of ISO 26262. In addition, the safety analysis/verification FMEA processforthe safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to autonomous vehicles and the results were confirmed. In addition, the safety analysis/verification FMEA process for the safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to the advanced driver assistance system and the results were confirmed.

Computer-Aided Decision Analysis for Improvement of System Reliability

  • Ohm, Tai-Won
    • 대한안전경영과학회지
    • /
    • 제2권4호
    • /
    • pp.91-102
    • /
    • 2000
  • Nowadays, every kind of system is changed so complex and enormous, it is necessary to assure system reliability, product liability and safety. Fault tree analysis(FTA) is a reliability/safety design analysis technique which starts from consideration of system failure effect, referred to as “top event”, and proceeds by determining how these can be caused by single or combined lower level failures or events. So in fault tree analysis, it is important to find the combination of events which affect system failure. Minimal cut sets(MCS) and minimal path sets(MPS) are used in this process. FTA-I computer program is developed which calculates MCS and MPS in terms of Gw-Basic computer language considering Fussell's algorithm. FTA-II computer program which analyzes importance and function cost of VE consists. of five programs as follows : (l) Structural importance of basic event, (2) Structural probability importance of basic event, (3) Structural criticality importance of basic event, (4) Cost-Failure importance of basic event, (5) VE function cost analysis for importance of basic event. In this study, a method of initiation such as failure, function and cost in FTA is suggested, and especially the priority rank which is calculated by computer-aided decision analysis program developed in this study can be used in decision making determining the most important basic event under various conditions. Also the priority rank can be available for the case which selects system component in FMEA analysis.

  • PDF

MRA에서 특성값의 측정단위와 수치형태에 따른 종합 만족도 산출 방법 (Calculation of Composite Desirability Function According to the Measurement Unit and Numerical Pattern of Characteristics in the Multiple Response Analysis)

  • 최성운
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 추계학술대회
    • /
    • pp.565-572
    • /
    • 2009
  • This paper presents the optimization steps with weight and importance of estimated characteristic values in the multiresponse surface analysis(MRA). The research introduces the shape parameter of individual desirability function for relaxation and tighening of specification bounds. The study also proposes the combinded desirability function using arithmetic, geometric and harmonic means considering the measurement unit and numerical pattern.

  • PDF