• Title/Summary/Keyword: Safety evaluation model

Search Result 1,251, Processing Time 0.026 seconds

Evaluation of Pile-Ground Interaction Models of Wind Turbine with Twisted Tripod Support Structure for Seismic Safety Analysis (지진 안전도 해석을 위한 Twisted Tripod 지지 구조를 갖는 풍력발전기의 말뚝-지반 상호작용 모델 평가)

  • Park, Kwang-yeun;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.81-87
    • /
    • 2018
  • The seismic response, the natural frequencies and the mode shapes of an offshore wind turbine with twisted tripod substructure subject to various pile-ground interactions are discussed in this paper. The acceleration responses of the tower head by four historical earthquakes are presented as the seismic response, while the other loads are assumed as ambient loads. For the pile-ground interactions, the fixed, linear and nonlinear models are employed to simulate the interactions and the p-y, t-z and Q-z curves are utilized for the linear and nonlinear models. The curves are designed for stiff, medium and soft clays, and thus, the seven types of the pile-ground interactions are used to compare the seismic response, the acceleration of the tower head. The mode shapes are similar to each other for all types of pile-ground interactions. The natural frequencies, however, are almost same for the three clay types of the linear model, while the natural frequency of the fixed support model is quite different from that of the linear interaction model. The wind turbine with the fixed support model has the biggest magnitude of acceleration. In addition, the nonlinear model is more sensitive to the stiffness of clay than the linear pile-ground interaction model.

Structural performance monitoring of an urban footbridge

  • Xi, P.S.;Ye, X.W.;Jin, T.;Chen, B.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.129-150
    • /
    • 2018
  • This paper presents the structural performance monitoring of an urban footbridge located in Hangzhou, China. The structural health monitoring (SHM) system is designed and implemented for the footbridge to monitor the structural responses of the footbridge and to ensure the structural safety during the period of operation. The monitoring data of stress and displacement measured by the fiber Bragg grating (FBG)-based sensors installed at the critical locations are used to analyze and assess the operation performance of the footbridge. A linear regression method is applied to separate the temperature effect from the stress monitoring data measured by the FBG-based strain sensors. In addition, the static vertical displacement of the footbridge measured by the FBG-based hydrostatic level gauges are presented and compared with the dynamic displacement remotely measured by a machine vision-based measurement system. Based on the examination of the monitored stress and displacement data, the structural safety evaluation is executed in combination with the defined condition index.

Theoretical evaluation of collision safety for Submerged Floating Railway Tunnel (SFRT) by using simplified analysis

  • Seo, Sung-il;Moon, Jiho;Mun, Hyung-Suk
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.293-299
    • /
    • 2017
  • Submarine collisions is one of the major hazardous factor for Submerged Floating Railway Tunnel (SFRT) and this study presents the safety evaluation for submarine collision to SFRT by using theoretical approach. Simplified method to evaluate the collision safety of SFRT was proposed based on the beam on elastic foundation theory. Firstly, the time history load function for submarine collision was obtained by using one-degree-of-freedom vibration model. Then, the equivalent mass and stiffness of the structure were calculated, and the collision responses of SFRT were evaluated. Finite element analysis was conducted to verify the proposed equations, and it can be found that the collision responses, such as deflection, and acceleration, agreed well with the proposed equations. Finally, derailment condition for high speed train in SFRT due to submarine collision was proposed.

A Study on the Evaluation Method of the Building Safety Performance and the Prediction of Occupants′ Egress Behavior during Building Fires with Computer Simulation (컴퓨터시뮬레이션에 의한 피난행태예측 및 안전성능평가방법에 관한 연구(II))

  • 최원령;이경회
    • Fire Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.11-19
    • /
    • 1989
  • In this study, the independent variables are the floor plan configulation. The dependent variables are the occupant's egress behavior, especially spatial movement pattern, and life - safety performance of building. Fire events were simulated on single story of office building. Simulation run for allowable secaping thime(180 seconds) arbitrarily selected, and involved 48 occupants. The major findings Pre as follows. 1) Computer simulation model suggested in this study can be used as the Preoccupancy evaluation method of the life-safety performance for architectural design based on prediction of occupants' egress behavior in the levels of validity and sensitivity, 2) Sucess or failure in occupants' escape is determined by decreasing walking speed caused by jamming at exits or over crowded corridor, and increasing route length caused by running about in confusion at each subdivision and corridor. 3) In floor plan configuration which safe areas located at the extreme ends of the corridor, cellular floor planning have to be avoided preventing jamming and running about in confusion at overcrowded corridor.

  • PDF

The Validation Test process and CTE Suitability Evaluation based on IEC-61508 for Improving Safety and Reliability on Unmanned ICT Parcel Storage

  • Myung Sung Kim;Young Min Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.233-243
    • /
    • 2023
  • In modern society, since the expansion of the e-commerce market and the spread of the pandemic, face-to-face business are gradually changing to non-face-to-face. In the logistics industry, the demand for unmanned courier storage is increasing due to lack of loading space from urbanization and courier theft accidents. As the demand for unmanned parcel lockers increases, improved functions such as food storage and efficient space loading are required. This study develops an integrated model-based evaluation procedure of product based on performance factors according to the IEC 61508 standard for newly unmanned parcel storage devices with active loading technology, and derive Critical Technology Element based on the product's core functions and performance goals. As proposing these research, We expect improve the safety and reliability of development targets by identifying and evaluating elements.

Static Behavior Analysis of Spillway Pier for Dam Safety Evaluation (댐 안전성 평가를 위한 여수로 피어부의 정적 거동 분석)

  • Jang, Bong-Seok;Lim, Jeong-Yeul;Lee, Myung-Kue;Lee, Hyung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • Seismic performance evaluation for dam safety evaluation has been continually conducted. However the behavior analysis for the spillway pier which is known as the weak point of dam is seldom reported. Therefore, this study performed the static loading tests for a prototype structures as elementary tests for the final seismic performance evaluation of dam safety. The prototype of pier structure has 1/20 scale and it adopts to strength model. And cracking loads and ultimate loads of real structures are calculated through numerical analysis using commercial FEM program (ABAQUS). The results of this study show some difference between the results of prototype tests and the results of numerical analysis. Also, the ultimate and cracking loads can be estimated through the prototype loading test and numerical analysis.

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Reliability Evaluation of Resilient Safety Culture Using Fault Tree Analysis

  • Garg, Arun;Tonmoy, Fahim;Mohamed, Sherif
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.303-312
    • /
    • 2020
  • Safety culture is a collection of the beliefs, perceptions and values that employees share in relation to risks within an organisation. On the other hand, a resilient safety culture (RSC) means a culture with readiness of the organisation to respond effectively under stress, bounce back from shocks and continuously learn from them. RSC helps organisations to protect their interest which can be attributed to behavioural, psychological and managerial capabilities of the organization. Quantification of the degree of resilience in an organisation's safety culture can provide insights about the strong and weak links of the organisation's overall health and safety situation by identifying potential causes of system or sub-system failure. One of the major challenges of quantification of RSC is that the attributes that determine RSC need to be measured through constructs and indicators which are complex and often interrelated. In this paper, we address this challenge by applying a fault tree analysis (FTA) technique which can help analyse complex and interrelated constructs and indicators. The fault tree model of RSC is used to evaluate resilience levels of two organisations with remote and urban locations in order to demonstrate the failure path of the weak links in the RSC model.

  • PDF

Teams Operation Performance Evaluation based on BSC (BSC에 근거한 팀제 운영 성과측정)

  • Yoo, Jin-Seong;Yoon, Seong-Pil;Cho, Tae-Yeon;Kim, Chang-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.4
    • /
    • pp.219-238
    • /
    • 2006
  • Many corporations are accepting various kinds of business reform techniques to be adapted and overcome in this e-Business period. Among these techniques, team-organization is selected most in person/organization field. The introduction of team-organization is more needed and spread, so many corporations actually constructed team-organization formation form. But the result has not been active. Therefore after team-organization is introduced to improve the performance evaluation of team management, the result of team management performance should be correctly measured to find out and settle the problems of team-organization. The purpose of this research presents the development of the model of team-management performance evaluation and the method of the proper measurement based on BSC.

Model-Based Architecture Design of the Range Safety Process for Live Fire Test with Enhanced Safety (실사격 시험 프로세스의 안전성 강화를 위한 MBSE 기반 아키텍처 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • In weapon systems development, live fire tests have been frequently adopted to evaluate the performance of the systems under development. Therefore, it is necessary to ensure safety in the test ranges where the live fire tests can cause serious hazards. During the tests, a special care must be taken to protect the test and evaluation (T&E) personnel and also test assets from potential danger and hazards. Thus, the development and management of the range safety process is quite important in the tests of guided missiles and artillery considering the explosive power of the destruction. Note also that with a newly evolving era of weapon systems such as laser, EMP and non-lethal weapons, the test procedure for such systems is very complex. Therefore, keeping the safety level in the test ranges is getting more difficult due to the increased unpredictability for unknown hazards. The objective of this paper is to study on how to enhance the safety in the test ranges. To do so, an approach is proposed based on model-based systems engineering (MBSE). Specifically, a functional architecture is derived utilizing the MBSE method for the design of the range safety process under the condition that the derived architecture must satisfy both the complex test situation and the safety requirements. The architecture developed in the paper has also been investigated by simulation using a computer-aided systems engineering tool. The systematic application of this study in weapon live tests is expected to reduce unexpected hazards and test design time. Our approach is intended to be a trial to get closer to the recent theme in T&E community, "Testing at the speed of stakeholder's need and rapid requirement for rapid acquisition."