• Title/Summary/Keyword: Safety evaluation model

Search Result 1,224, Processing Time 0.029 seconds

A Study of Dynamic Analysis of Wheel Force Spectrum between Road and PSC Bridge tracks for the KTX Safety Evaluation (KTX 차량의 주행안정성 평가를 위한 노상과 PSC 교량 상의 윤하중분포 동적해석 연구)

  • Lee, Dong-Jun;Oh, Soon-Taek;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.793-799
    • /
    • 2011
  • A comprehensive analysis of wheel force spectrum is conducted to provide the KTX safety evaluation with structural behaviour of Pre-Stressed Concrete (PSC) box bridge due to various high speeds. The wheel spectrum for KTX locomotive running over road and PSC bridge tracks is compared using irregular track responses with numerical models of 170m approach road track and 40m span length of PSC box bridge The high-speed railway locomotive is used as 38-degree of freedom system. Three displacements (vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing) for one car-body and two bogies are considered in the 38-degree of freedom model. Three dimensional frame element of finite element method (FEM) is used to model of the simply supported PSC box bridge. The irregulation of rail-way is derived using the experiential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic analyses by Runge-Kutta method which are able to analyze the high frequency wheel force spectrum. A dynamic behaviour of KTX due to high speeds until 450km/h developing speed with relative time is analysed and compared the characteristics running over the road and PSC box bridge tracks. Finally, the KTX integrated evaluation method of safety between high speed train and bridge is presented.

  • PDF

Pattern Analysis for Safety Evaluation System of Groundwater Well Based on Object Oriented Spatial Model (객체지향 공간 모델에 기반한 지하수 관정 안전도 평가 시스템을 위한 유형적 분석)

  • Lee, Jae-Bong;Kwak, Hoon-Sung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.893-900
    • /
    • 2004
  • This paper is to define the method that develops the software In proper to application areas of Geographic Information Systems and design patterns according to functions and roles that implement the system for safety evaluation of the groundwater well based on an object oriented spatial model. In order to design the user interface of the groundwater well, this paper proposes the framework that should classify only requisite components adaptable to various application areas. By specifying De pattern appropriate to the application domain and designing the analysis pattern using the UML based on the object oriented methodology. this paper shah contribute to enhance the reuse of components that can develop and distribute a .large scale open system.

Development of Time-based Safety Performance Function for Freeways (세부 집계단위별 교통 특성을 반영한 고속도로 안전성능함수 개발)

  • Kang, Kawon;Park, Juneyoung;Lee, Kiyoung;Park, Joonggyu;Song, Changjun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.203-213
    • /
    • 2021
  • A vehicle crash occurs due to various factors such as the geometry of the road section, traffic, and driver characteristics. A safety performance function has been used in many studies to estimate the relationship between vehicle crash and road factors statistically. And depends on the purpose of the analysis, various characteristic variables have been used. And various characteristic variables have been used in the studies depending on the purpose of analysis. The existing domestic studies generally reflect the average characteristics of the sections by quantifying the traffic volume in macro aggregate units such as the ADT, but this has a limitation that it cannot reflect the real-time changing traffic characteristics. Therefore, the need for research on effective aggregation units that can flexibly reflect the characteristics of the traffic environment arises. In this paper, we develop a safety performance function that can reflect the traffic characteristics in detail with an aggregate unit for one hour in addition to the daily model used in the previous studies. As part of the present study, we also perform a comparison and evaluation between models. The safety performance function for daily and hourly units is developed using a negative binomial regression model with the number of accidents as a dependent variable. In addition, the optimal negative binomial regression model for each of the hourly and daily models was selected, and their prediction performances were compared. The model and evaluation results presented in this paper can be used to determine the risk factors for accidents in the highway section considering the dynamic characteristics. In addition, the model and evaluation results can also be used as the basis for evaluating the availability and transferability of the hourly model.

A Study of Model-Based Aircraft Safety Assessment (모델기반 항공기 안전성평가에 관한 연구)

  • Kim, Ju-young;Lee, Dong-Min;Lee, Byoung-Gil;Gil, Gi-Nam;Kim, Kyung-Nam;Na, Jong-Whoa
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.24-32
    • /
    • 2021
  • Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

Proposal and Evaluation of the Safety Inspection Cost Estimation Model for Multi-building Construction Project (군집시설물 건설공사의 안전점검 대가 산정모델 제안 및 평가)

  • Kim, Jin-Won;Bang, Jong-Dae;Sohn, Jeong-Rak
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.11-18
    • /
    • 2017
  • The safety inspection cost of the construction work was based on commercial facilities classified as a single building. Therefore, it is not possible to fully reflect the characteristics of the multi-building construction project such as apartment houses. Therefore, this study suggests a reasonable estimation model that can fully reflect the characteristics of the multi-building construction project. The safety inspection cost estimation model proposed two models such as construction cost ratio method and cost plus fixed fee method. And these models were simulated by the apartment construction work and compared with the current standard. As a result, the current construction cost ratio method has shown that the safety inspection cost tends to be overestimated as the construction size increases. Therefore, the proposed model has reflected characteristics of the multi-building construction project, so that it can reasonably estimate the safety inspection cost more than the current standard.

Safety Estimation Index of Infectious Disease (COVID-19) in Workplaces (사업장에 적용 가능한 감염병(COVID-19) 위험성평가 지표 개발)

  • Kim, Ha Kyeong;Lee, Myoung Ha;Song, Hyung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.88-96
    • /
    • 2022
  • Widespread infectious diseases are a concern for workers working in confined spaces. However, there is no risk assessment index for the risk of infectious disease in the workplace. Therefore, we propose a simple but effective index model to assess the risk of infectious diseases in the workplace. The proposed model identifies the risk of each workplace through an evaluation sheet comprising the frequency and intensity of the infectious disease. The intensity of an infectious disease is generally governed by the density of workers, whereas frequency is the sum of physical-e nvironmental and human management factors. By multiplying intensity and frequency, the risk of the workplace is derived. Through the proposed model, we evaluate the risks of workers at 15 different work sites. The proposed model clearly reveals what should be improved to keep workers safe from infectious diseases and will be helpful in assessing the risk of contagious disease at the work place.

A Investigation Study on the Development of Egress Simulation for Evacuation Safety Evaluation of Tokyo Fire Dept. Department in Japan (일본 동경소방청의 피난안정성평가 시뮬레이션 기술개발 사례연구)

  • Lee, Hyun-Jin;Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.216-222
    • /
    • 2008
  • A large number of Computer-based fire growth and Evacuation model have been developed for various purpose and many of these are widely used for research and engineering. And Most of Egress simulation program are ordinary case only related to human behavior But Egress safety Evaluation is very closed to smog movement. It is well known that the Egress simulation program made by Tokyo Fire Department are related to smog movement. So It is the aim of this study to investigate on the Development of Egress Simulation for Evacuation Safety Evaluation of Tokyo Fire Dept. Department in Japan.

  • PDF

SYSTEM RELIABILITY-BASED EVALUATION OF BRIDGE SYSTEM REDUNDANCY AND STRENGTH (체계신뢰성에 기초한 교량의 시스템여용성 및 저항강도 평가)

  • 조효남;이승재;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.240-247
    • /
    • 1993
  • The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult especially when the bridges are highly redundant and significantly deteriorated or damaged. This paper is intended to propose a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. It may be emphasized that this approach is very useful for the evaluation of the deterministic system redundancy and reserve strength which are measured in terms of either probabilistic system redundancy factor and reserve factor or deterministic system redundancy factor and reserve factor. The system reliability of bridges is formulated as a parallel-series model obtained from the FAM(Failure Mode Approach) based on the major failure mechanisms. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed approach and method for the system redundancy and reserve safety/strength are applied to the safety assessment of actual RC and steel box-girder bridges. The results of the evaluation of reserved system safety or bridge system-strength in terms of the system redundancy and the system safety/strength are significantly different from those of element reliability-based or conventional methods.

  • PDF

A Study on Development of High Risk Test Scenario and Evaluation from Field Driving Conditions for Autonomous Vehicle (실도로 주행 조건 기반의 자율주행자동차 고위험도 평가 시나리오 개발 및 검증에 관한 연구)

  • Chung, Seunghwan;Ryu, Je Myoung;Chung, Nakseung;Yu, Minsang;Pyun, Moo Song;Kim, Jae Bu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.40-49
    • /
    • 2018
  • Currently, a lot of researches about high risk test scenarios for autonomous vehicle and advanced driver assistance systems have been carried out to evaluate driving safety. This study proposes new type of test scenario that evaluate the driving safety for autonomous vehicle by reconstructing accident database of national automotive sampling system crashworthiness data system (NASS-CDS). NASS-CDS has a lot of detailed accident data in real fields, but there is no data of accurate velocity in accident moments. So in order to propose scenario generation method from accident database, we try to reconstruct accident moment from accident sketch diagram. At the same step, we propose an accident of occurrence frequency which is based on accident codes and road shapes. The reconstruction paths from accident database are integrated into evaluation of simulation environment. Our proposed methods and processor are applied to MILS (Model In the Loop Simulation) and VILS (Vehicle In the Loop Simulation) test environments. In this paper, a reasonable method of accident reconstruction typology for autonomous vehicle evaluation of feasibility is proposed.

Seismic vulnerability evaluation of a 32-story reinforced concrete building

  • Memari, A.M.;Motlagh, A.R. Yazdani;Akhtari, M.;Scanlon, A.;Ashtiany, M. Ghafory
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Seismic evaluation of a 32-story reinforced concrete framed tube building is performed by checking damageability, safety, and toughness limit states. The evaluation is based on Standard 2800 (Iranian seismic code) which recommends equivalent lateral static force, modal superposition, or time history dynamic analysis methods to be applied. A three dimensional linearly elastic model checked by ambient vibration test results is used for the evaluation. Accelerograms of three earthquakes as well as linearly elastic design response spectra are used for dynamic analysis. Damageability is checked by considering story drift ratios. Safety is evaluated by comparing demands and capacities at the story and element force levels. Finally, toughness is studied in terms of curvature ductility of members. The paper explains the methodology selected and various aspects in detail.