• 제목/요약/키워드: Safety and stability analysis

검색결과 1,344건 처리시간 0.032초

Application of Hyperbolic Two-fluids Equations to Reactor Safety Code

  • Hogon Lim;Lee, Unchul;Kim, Kyungdoo;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • 제35권1호
    • /
    • pp.45-54
    • /
    • 2003
  • A hyperbolic two-phase, two-fluid equation system developed in the previous work has been implemented in an existing nuclear safety analysis code, MARS. Although the implicit treatment of interfacial pressure force term introduced in momentum equation of the hyperbolic equation system is required to enhance the numerical stability, it is very difficult to implement in the code because it is not possible to maintain the existing numerical solution structure. As an alternative, two-step approach with stabilizer momentum equations has been selected. The results of a linear stability analysis by Von-Neumann method show the equivalent stability improvement with fully-implicit solution method. To illustrate the applicability, the new solution scheme has been implemented into the best-estimate thermal-hydraulic analysis code, MARS. This paper also includes the comparisons of the simulation results for the perturbation propagation and water faucet problems using both two-step method and the original solution scheme.

장대교량 신축부에서 침목간격 확대가 차량의 주행안전성 및 궤도의 구조안정성에 미치는 영향 (Effects of Expansion of Sleeper Span at the Deck End of a Long Continuous Bridge on Train Safety and Track Stability)

  • 양신추
    • 한국소음진동공학회논문집
    • /
    • 제25권9호
    • /
    • pp.620-627
    • /
    • 2015
  • Long continuous bridge deck can become contracted considerably as temperature drops, which can lead to a large expansion of sleeper span at the end of it. Since this huge sleeper span then can cause problems both with safety of train operation and structural stability of tracks, it is necessary to take the issue into consideration systematically in the designing process of the bridge. In this paper, an evaluation process through the analysis of train-track interaction was presented which can basically review the effects of the expansion of sleeper span at the end of long continuous bridge deck on the safety of the train and the structural stability of the track. The analyses of the interaction between the light rail train and tracks were carried out targeting the sleeper span as a main parameter. The safety of train operation and structural stability of tracks in a light rail system due to the expansion of the sleeper span were evaluated by comparing the numerical results with the related criteria.

대도시 기존 사면의 안정화 연구 (A Study of the Existing Slope Stability in a Big City)

  • 이수곤;양홍석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.265-272
    • /
    • 2001
  • Excavation in a big city is different from excavation in a local area because construction methods and stability are directly connected in a loss of life. Especially, estimate of rock mass slope stability is excuted by more detail and safty work. In this study, we are made reserches in rock mass slope stability and safety method that the slope is closed by elementary school in a big city. The result of many field study and numerical analysis is shown up direct reinforcement used to anchor.

  • PDF

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang;Meijuan Xu;Wei Hu;Zehang Qian;Qiujing Pan
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.639-652
    • /
    • 2023
  • Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.

지하수위에 따른 철도사면의 안정성 변화 (The Variation of Slope Stability by Ground Water Level in Railway Lines)

  • 김현기;신민호;신지수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.789-795
    • /
    • 2008
  • Slope stability is affected by various factors. For safety management of slopes, monitoring systems have been widely constructed along railway lines. The representative data from the systems are variations of ground profile such like ground water level and pore water pressure etc. and direct displacement measured by ground clinometer and tension wire sensor. Slopes are mainly effected by rainfall and rainfall causes the decrease of factor of safety(FOS). Because FOS varies linearly by the variation of ground water level and pore pressure, it has a weak point that could not define the time and proper warning sign to secure the safety of the train. In this study, alternative of FOS such as reliability index and probability of failure is applied to slope stability analysis introducing the reliability concept. FOS, reliability index, probability of failure and velocity of probability of failure of the slopes by variation of ground water level are investigated for setting up the specification of safety management of slopes. By executing case study of a slope(ILLO-IMSUNGLI), it is showed to be applied to specification of safety management.

  • PDF

Gaussian process regression model to predict factor of safety of slope stability

  • Arsalan, Mahmoodzadeh;Hamid Reza, Nejati;Nafiseh, Rezaie;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.453-460
    • /
    • 2022
  • It is essential for geotechnical engineers to conduct studies and make predictions about the stability of slopes, since collapse of a slope may result in catastrophic events. The Gaussian process regression (GPR) approach was carried out for the purpose of predicting the factor of safety (FOS) of the slopes in the study that was presented here. The model makes use of a total of 327 slope cases from Iran, each of which has a unique combination of geometric and shear strength parameters that were analyzed by PLAXIS software in order to determine their FOS. The K-fold (K = 5) technique of cross-validation (CV) was used in order to conduct an analysis of the accuracy of the models' predictions. In conclusion, the GPR model showed excellent ability in the prediction of FOS of slope stability, with an R2 value of 0.8355, RMSE value of 0.1372, and MAPE value of 6.6389%, respectively. According to the results of the sensitivity analysis, the characteristics (friction angle) and (unit weight) are, in descending order, the most effective, the next most effective, and the least effective parameters for determining slope stability.

비등방성 원뿔형 쉘의 안정성에 관한 연구 (A Study on the Stability of Anisotropic Circular Conical Shells)

  • 박원태;손병직
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.128-133
    • /
    • 2001
  • In this paper, stability analysis is carried out far the out of plane behaviors under compressive loads to the conical direction. It is not easy to obtain the analytic solutions about the stability analysis of anisotropic conical shells consisted of composite materials. For solving this problems, this paper used the finite difference method which is one of the numerical methods. The characteristics of the buckling behaviors of anisotropic laminated composite conical shells may be different according to a variety of causes, that is, the change of fiber angle, material arrangement, radius ratio, shape ratio and so on. The objective of this study is to analyze buckling behaviors of circular conical shells with shear deformation effects and to prove the advantage of composite materials.

  • PDF

절리가 심하게 발달된 암반사면의 최적 절취각 고찰 (A Study fo rthe determination of optimum cutangle for the heavily jointed rock slope)

  • 홍예성;조태진;한공창
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.166-174
    • /
    • 1996
  • Stability of rock slope is greatly affected by the geometry and strength of discontinuities developed in the rock mass. In this study an analytical method which is capable of analyzing the effect of relative orientation between the discontinuities and the slope face on the safety of slope by assessing their vector components was used to evaluate the stability and the maximum cut-angle for the proposed slope design. The results of computerized vector analysis revealed that slope area under investigation might be divided into 3 sections of different face directions. The safety factors for benches in each 3 sections were calculated using the limit-equilibrium theory. Then, by utilizing the concept of probabilistic risk analysis, the susceptibility of entire slope failure was estimated. Based on the distribution of safety factor in each bench, the maximum cut angle of each section could be selected differently ot achieve the permanent stability of the entire slope.

  • PDF