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Abstract

A hyperbolic two-phase, two-fluid equation system developed in the previous work has been

implemented in an existing nuclear safety analysis code, MARS. Although the implicit treatment

of interfacial pressure force term introduced in momentum equation of the hyperbolic equation

systemn is required to enhance the numerical stability, it is very difficult to implement in the code

because it is not possible to maintain the existing numerical solution structure. As an alternative,

two-step approach with stabilizer momentum equations has been selected. The results of a

linear stability analysis by Von-Neumann method show the equivalent stability improvement

with fully-implicit solution method. To illustrate the applicability, the new solution scheme has

been implemented into the best-estimate thermal-hydraulic analysis code, MARS. This paper

also includes the comparisons of the simulation results for the perturbation propagation and

water faucet problems using both two-step method and the original solution scheme.

Key Words : hyperbolic, two-fluid equation, interfacial pressure force, MARS, stability, two-

step method

1. Introduction

For thermal-hydraulic modeling of two-phase
flow systems, separated flow model so called two-
fluid model are widely used in nuclear reactor
safety analysis codes[8, 10]. Single pressure
assumption that the pressures of liquid, vapor, and
interface are identical is commonly adopted for
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equation system closure. It is well known that
typical two-phase flow models with a single
pressure assumption possess complex
characteristics that may result in system being ill-
posed [1]. Consequently, typical six-equation
models may cause the unbounded growth of
instabilities. In order to mitigate these instabilities,

a hyperbolic equation system was proposed by
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introducing new interfacial pressure force terms
into the single-pressure two-fluid equations [2].
Stuhmiller{3] has searched similar interfacial
pressure force terms under the incompressible
flow condition and these terms are being used in
the CATHARE code. However, these terms do
not render single pressure model hyperbolic in the
real flow conditions. In this work, new equation
system is implemented to a reactor safety analysis
code, MARS [5]. Two-step method was chosen as
numerical scheme and stability analysis was carried
out for two-step method to confirm the degree of
stability enhancement compared to implicit
numerical method. Although the implicit treatment
of interfacial pressure force terms introduced in
momentum equations may be required to enhance
the numerical stability, two-step solution scheme
with stabilizer momentum equations has been
selected as an alternative, which maintains the
existing numerical solution structure. The result of
locally linearized stability analysis by Von-
Neumann method [4] shows that the equivalent
stability improvement is ensured with that of
implicit solution method. Then, two benchmarking
problems of wave perturbation and water faucet
are performed to evaluate the numerical stability
and accuracy of present model.

2. Two Step Method

The previously developed phasic momentum
equations for two-fluid model is as follows
1 ov} ap
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M, indicates non-differential terms such as wall
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and interfacial drag, vapor generation and body
force. Fourth term of left-hand side indicates

interfacial pressure force. For the easy decoupling
of momentum equation with mass and energy
equations, the MARS code limits the implicitness
of difference momentum equation. New time-step
values of phasic velocity in the resulting difference
momentum equation should be expressed as a
function of pressures only. However, explicit
treatment of interfacial pressure force term cannot
guarantee overall stability enhancement. As an
alternative, two-step method was chosen to
maintain existing solution procedure of MARS and
enhance the stability by increasing the implicitness
of interfacial pressure force difference term. In the
basic step, interfacial pressure force term is
differenced explicitly and subsequent difference
momentum equations are expressed as a function
of pressure as in the original equations of MARS.
Resulting difference equations of momentum,
mass, and energy are as follows:

Basic step:
phasic momentum:
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The values having bar on top in the difference
momentum equation (2) denote average value of
neighboring scalar cells and the values having a

dot on top are donored quantities based on phasic
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velocities, ,; and Uy, Values having tilde on top
means tentative variables. Solution procedure used
in the MARS code is adopted for solving
dependent variables, p, ai, Uy, and 0. Tentative
phasic velocities are subsequently updated in
stabilizing step based on the new time-step values
of void fractions. Resulting stabilizer momentum

equations at stabilizing step are written as follows:
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Because all variables except velocities are already
calculated in the basic step, equation (5) is simple
algebraic equation. Therefore, adding stabilizing
step does not influence the calculational efficiency
of code.

3. Numerical Stability Analysis

To investigate the numerical stability of the two-
step method, Von-Neumann stability analysis was
performed([4, 9]. For simplification, the following
conditions were used.

(1) Exclusion of lower order terms as well as
source terms
(2) Exclusion of energy equations
Lower order terms such as wall friction and
interfacial drag are generally considered to have
positive influence on stability [6]. Also, energy
equation imposes the condition so called Courant
limit. Courant limit is used as limit condition of
present stability analysis. The resultant phasic
mass and momentum equations can be written as:

Basic mass equation:

n+l ” n n+] n n+l n
Qe =0, |, %y | Pi TP o B~
Zhi Tk 2 T Le(pv, )| ——
p"[ At } et At (o) Ax )

n+l n ~n+l ~n+l
av, \p P o] Vejsr2 " Vhj-ii2 -0
+[ e ][ Ax :| (PA A)Ii Ax

Hogon Lim, et al 47

Basic phasic momentum equation:
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Stabilizing momentum equation:
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where the subscript k denotes ‘g’ and ‘f' for
vapor and liquid phases, respectively.

To investigate the stability of numerical scheme,
dependent variables are expressed as wave
component that has frequency of ‘k’, that is

@', = ' (k)e'™ (9)

Using equation(9}, equations(6)-(8) are rewritten
as:

Basic step mass equation:
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Basic step momentum equation
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where ¥, =v, %(l —e™™%y k"= 2sin(kdx/2)

In case that U is a vector containing six
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amplitudes of the dependent variables, o, p, o, pg(l—\_’g) gf-(l-"’g) 00 0 0
¥, vy and vy, equation (10) through (12) for each ;*’
phase can be written in the form of. -p,(1-%,) ';z/' 1-5,)o00 0 0
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Fig. 1. Spectral Radius Contour for the Compressible Flow Condition
Cy=1,6=5,kAx=n/6e=1,0,=0.5
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This fourth order characteristic polynomial is too
complicated to determine the spectral radius
analytically. To examine the effect of the
interfacial pressure force, the spectral radius
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contour for the two-step method is compared with
the implicit treatment of interfacial pressure force
in figures 1 and 2 for the representative conditions
of compressibility and incompressibility,
respectively. Also, the spectral radius contours of
the basic and MARS default models are
represented to compare the stability with the new
model. For small and large phasic sonic speeds,
which imply compressible and incompressible
conditions, respectively, the spectral radius
contours of different numerical treatment of
interfacial pressure force are very similar and
satisfy the convective limit. Consequently, two-step

approach of the interfacial pressure force
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Fig. 2. Spectral Radius Contour for the Incompressible Flow Condition
ég=10% ¢,= 5x10°, kAx = #/6,e = 1,0 = 0.5
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TOV » 01020304 9219394 |95|96 —» TDV
Time dependent
junction
Fig. 3. Nodalization of Horizontal Pipe
significantly enhances the numerical stability as in
0515 T T T T T
the case of implicit treatment.
0510 || o==—0.00 sec
- = 0.04sec
4. Stability Test Problems osos || . O08sec
-===-0.32 sec
% osoold 0.64 sec N
The new hyperbolic model was implemented in g
a MARS code using two-step method. To examine § 0495 |-
the stability and accuracy of the present model, a o040 L i
wave perturbation and water faucet problems have
0.485 - H
been simulated and the results were compared R T
[} 20 30 4
with those of MARS default model. For simplicity, * v;um:;um;; voR o
non-differential terms such as wall friction, (a) MARS default
interfacial drag, and vapor generation have been
ignored. As mentioned above chapter, these terms 0sts
have positive effects in the sense of numerical m
stability. Details of problem geometry and initial ostor —ggg sec )
conditions are as follows. 0.505 - 0.08 sec J
—--D.1636c
c -+--032s6c
§ 0.500 foe]  ceoeese 0.64 sec A i
4.1. Wave Perturbation Problem T 200
§ 0495 - 4
It is well known that if the system of equations is 0490 - .
hyperbolic and a consistent numerical scheme is o L
adapted, a perturbation must be damped along T T T e T e e T e e

with its propagation due to numerical diffusion.
The simulations were carried out for two kinds of
waves, having different wavelengths. A horizontal
pipe with length of 11m is selected as test
geometry and discretized into 96 volumes. The
nodalization is shown in Fig. 3. Pipe is initially

Volume Number

(b} Two-step method

Fig. 4. Short Wavelength Void Perturbation
(perturbation wavelength:1 x4x) v, =
10m/sec, v, = 1.0m/sec
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Fig. 5. Long Wavelength Void Perturbation
(perturbation wavelength:11 xAx) vy =
10m/sec, v, = 1.0m/sec

filled with saturated liquid and vapor with a
constant void fraction of 0.5. The initial liquid and
vapor velocities are 1 m/s and 0.1m/s,
respectively. As shown in Figs. 4 and 5, the void
perturbation is damped continuously as wave
propagates in the new model. On the contrary,
the default model shows unstable propagation
characteristics. It is thought that the MARS default
mode] has partially elliptic characteristic. From
these results, it is obvious that the new model with
the interfacial pressure force term has more stable
characteristics.

Time dependent

volume .
Y ... _Time dependent
A - junction
. -
|
|

Time dependent
volume

Fig. 6. Schematic and Nodalization of FAUCET
Problem

4.2. Water Faucet Problem

In this numerical experiment, the accuracy of
the new model is tested. Ransom has developed a
two-phase benchmark problem, which has an
analytic solution {7]. In his problem, the only
driving force is gravity and frictions are ignored.
The simulated pipe is a vertical channel with 96
volumes and is about 11m high. The nodalization
and schematic diagram are shown in Fig. 6. At the
start of the simulation, water falls into the pipe

with an initial velocity of 10m/s at the top
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Fig. 7. The Water Faucet Problem(MARS original)

entrance. Then, the falling speed of water is
accelerated by gravity. As shown in Figs. 7 and 8,
the result of the present model agrees well with
the exact solution. Broadening of the void fraction
profile at the front of falling water is thought to be
due to numerical diffusion.

5. Summary and Conclusions

We implemented the hyperbolic two-phase
model to the safety analysis code, MARS, using
two-step finite difference scheme to maintain the
existing code calculation structure. To examine the
numerical stability of this method, a linearized

Von-Neumann stability analysis was carried out. It
was shown that stability characteristic of implicit
treatment of void derivative is also valid for the
two-step method. The solution accuracy and
applicability of a developed solution scheme have
been demonstrated by the simulation results of the
benchmark problem. This model is currently
adopted in MARS as an option. Since it is
required to perform various test simulations for the
new model to be used in real plant safety
calculation, many numerical tests including
integrated system simulations are now being
carried out.
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Fig. 8. The Water Faucet Problem (Interfacial pressure force)
Nomenclature Subscripts
A flow area f liquid phase
¢ sonic speed g vapor phase
k wave number i interface
p pressure m mixture
v velocity j node index
o void fraction
Ax volume length Superscripts
At time step size n time step advancement
r vapor generation rate
p mass density Acknowledgments
U internal energy
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