• Title/Summary/Keyword: Safety Step System

Search Result 415, Processing Time 0.026 seconds

A Loss-of-RHR Event under the Various Plant Configurations in Low Power or Shutdown Conditions

  • Seul, Kwang-Won;Bang, Young-Seok;Lee, Sukho;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.551-556
    • /
    • 1997
  • A present study addresses a loss-of-RHR event as an initiating event under specific low power or shutdown conditions. Two typical plant configurations, cold leg opening case with water-filled steam generators and pressurizer opening case with emptied steam generators, were evaluated using the RELAP5/ MOD3.2 code. The calculation was compared with the experiment conducted at ROSA-IV/LSTF in Japan. As a result, the code was capable of simulating the system transient behavior following the event. Especially, thermal hydraulic transport processes including non-condensable gas behavior were reasonably predicted with an appropriate time step and CPU time. However, there were some code deficiencies such as too large system mass errors and severe flow oscillations in core region.

  • PDF

A Study of Plans for systemizing Railway System Safety Technology Tree (철도시스템안전 기술트리 체계화 방안에 관한 연구)

  • Hong Seon-Ho;Cho Yeon-Ok
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.623-629
    • /
    • 2005
  • A technical road map is one of critical research methods which include mid/long term strategies and objectives. There are many of projects conducted using this road map. A technical tree is used at the step of planning of the projects. This research was aimed at reviewing previous systems for conducting researches for and a basis required for improving railway safety in the future by finding out inconsistency arising from physical WBS, which is methodology of defining in existing railway technical trees. In the process of this research, we considered differences between systems safety and prevention as well as natures of them using the established technical tree, and set up plans for improving technical tree to secure railway safety as an integrated system.

  • PDF

Estimation of Hydrodynamic Coefficients from Sea Trials Using a System Identification Method

  • Kim, Daewon;Benedict, Knud;Paschen, Mathias
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.258-265
    • /
    • 2017
  • This paper validates a system identification method using mathematical optimization using sea trial measurement data as a benchmark. A fast time simulation tool, SIMOPT, and a Rheinmetall Defence mathematical model have been adopted to conduct initial hydrodynamic coefficient estimation and simulate ship modelling. Calibration for the environmental effect of sea trial measurement and sensitivity analysis have been carried out to enable a simple and efficient optimization process. The optimization process consists of three steps, and each step controls different coefficients according to the corresponding manoeuvre. Optimization result of Step 1, an optimization for coefficient on x-axis, was similar compared to values applying an empirical regression formulae by Clarke and Norrbin, which is used for SIMOPT. Results of Steps 2 and 3, which are for linear coefficients and nonlinear coefficients, respectively, was differ from the calculation results of the method by Clarke and Norrbin. A comparison for ship trajectory of simulation results from the benchmark and optimization results indicated that the suggested stepwise optimization method enables a coefficient tuning in a mathematical way.

A Study on the Portable and Vehicle-Mounted Generators Grounding of Low-Voltage Systems (간이 저압 전력계통에서의 계통 접지대책에 관한 연구)

  • Wee, Won-Seok;Kim, Jung-Hoon;Cho, Gyu-Deak;Ryu, Bo-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.43-45
    • /
    • 2000
  • In this paper, portable and vehicle-mounted generators grounding methods of low-voltage systems is compared to each other. Ungrouded system is better for the safety operation than solidly grounding system. This paper also determined the magnitude and duration of the permissible body current limit and step voltage for the solidly-grounding and ungrounded system.

  • PDF

Field Empirical Result Analysis According to the Operation Reliability Test of the Wireless Gas Shut-off Device (무선가스 차단 장치 동작 신뢰성 시험에 따른 현장 실증 결과분석)

  • Hwang, Do-Yeon;Lee, Kyung-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.70-77
    • /
    • 2021
  • As IoT technology develops along with the 4th industrial revolution, gas safety products to which IoT technology is applied are being developed. However, since the gas safety system was not allowed, system improvement and operation reliability test for IoT gas safety products are required. This thesis researches IoT fuse cock and smart multi-function meter among IoT gas safety products, and analyzes the empirical data of IoT fuse cock to secure operational reliability data, thereby becoming a leader in IoT gas safety products. It aims to develop gas barrier technology one step further through various test evaluations and methods in the future.

Identifying Hazard of Fire Accidents in Domestic Manufacturing Industry Using Data Analytics (국내 제조업 화재사고 데이터 분석을 통한 복합 유해·위험요인 확인)

  • Kyung Min Kim;Yongyoon Suh;Jong Bin Lee;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.23-31
    • /
    • 2023
  • Revising the Occupational Safety and Health Act led to enacting and revising related laws and systems, such as placing fire observers in hot workplaces. However, the operating standards in such cases are still ambiguous. Although fire accidents occur through multiple and multi-step factors, the hazards of fire accidents have been identified in this study as individual rather than interrelated factors. The aim has been to identify multiple factors of accidents, outlining fire and explosion accidents that recently occurred in the domestic manufacturing industry. First, major keywords were extracted through text mining. Then representative accident types were derived by combining the main keywords through the co-word network analysis to identify the hazards and their relationships. The representative fire accidents were identified as six types, and their major hazards were then addressed for improving safety measures using the identification of hazards in the "Risk Assessment" tool. It is found that various safety measures, such as professional fire observers' training and clear placement standards, are needed. This study will provide useful basic data for revising practical laws and guidelines for fire accident prevention, system supplementation, safety policy establishment, and future related research.

A Cause Analysis of the Construction Incident Using Causal Loop Diagram : Safety Culture Perspective (인과지도를 활용한 건설 안전사고 원인 분석 : 안전문화 관점)

  • Choi, Yun Gil;Cho, Keun Tae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.34-46
    • /
    • 2020
  • Unlike research focused on existing technologies and individual errors to analyze the causes of incidents, this study approached them from an organization and culture. And this study is not a one way study but cyclical study what can track cause down using causal loop diagram methodology. Four diagnostic criteria for the negative state of the safety culture : secretive, blame, failure to learning, and incremental learning, combine literature study and expert opinion to derive 41 variables. Connecting these variable make 4 causal loop diagrams and total causal loop diagram. Case accumulation in secretive, accident report in blame, knowledge accumulation in failure to learning, near miss discovery in incremental learning are the main variables. Safety incident is the objective variable by classifying them into 4 stages in total loop, leading track as the most affect is case accumulation, and Step 4 as you can see accident report and near miss discovery are the result of tracking down the cause. This study can be used as a basis for improving the management priority and the system in incident prevention.

Development of Durability Design System for Concrete Structures (콘크리트 구조물의 내구성 설계시스템 개발)

  • 변근주;권성준;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.161-166
    • /
    • 1998
  • The concrete structures designed and constructed by conventional design concept based on structural performance consideration show sometimes serious durability problem when the structures are exposed to aggressive environment. Because present design system focuses on the structure safety and considers durability indirectly by the concrete mix design and cover depth, the durability of concrete structure cannot be ensured. As the first step to develope the durability design for concrete structure, durability index which represents internal concrete resistance and environment index which represents external environmental exposure are derived quantitatively. In the next step, the durability design system is developed by checking durability limit state with computed two indexes under service life condition by considering of the reliability of structure. Finally, the proposed system is verified with a model problem.

  • PDF

A Design on the TMS-DCU Interface for Low and High Level Railway Platforms (저상 및 고상 철도 승강장 겸용 승강문 제어유닛과 열차모니터링시스템의 인터페이스 설계)

  • Kim, Chul-Su;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.325-330
    • /
    • 2014
  • In order to operate trains both mainline railroad platform and metropolitan subway line platform, it is necessary to develop the door step equipment of the rolling stock regardless of low(500mm, mainline) and high level platforms(1,135mm, metropolitan subway line) because of the requisite door safety system. In this study, TMS-DCU interface is studied for low and high level railway platforms. As a result, Design circuit of TMS(Train Management System)-DCU(Door Control Unit) interface is suitable for telescopic sliding type doorstep unit to minimize damage to the carbody underframe of railway vehicles.

Validation of Efficient Welding Technique to Reduce Welding Displacements of Ships using the Elastic Finite Element Method

  • Woo, Donghan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.254-261
    • /
    • 2020
  • Welding is the most convenient method for fabricating steel materials to build ships and of shore structures. However, welding using high heat processes inevitably produces welding displacements on welded structures. To mitigate these, heavy industries introduce various welding techniques such as back-step welding and skip-step welding. These techniques effect on the change of the distribution of high heat on welded structures, leading to a reduction of welding displacements. In the present study, various cases using different and newly introduced welding techniques are numerically simulated to ascertain the most efficient technique to minimize welding displacements. A numerical simulation using a finite element method based on the inherent strain, interface element and multi-point constraint function is introduced herein. Based on several simulation results, the optimal welding technique for minimizing welding displacements to build a general ship grillage structure is finally proposed.