• Title/Summary/Keyword: Safety Level

Search Result 6,761, Processing Time 0.034 seconds

Improvement on Access Control of Hazard Zone in a Steel Manufacturing Industry (철강 제조업에서의 유해.위험구역 출입 관리 방안)

  • Seo, Seong-Hwa;Kim, Min;Weon, Jong-Il;Woo, Heung-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.63-68
    • /
    • 2011
  • Access-control of hazard zone in a steel manufacturing industry is studied in terms of safety management. Based on the results of risk evaluation for hazard zone, three risk zones with low, middle and high level are categorized. These zones have different color door and locking shape depending on their risk levels. At the high level, red door and key-based locking system are employed to accessed-controled path. Furthermore, tagout, lockout, interlock system for emergency stop, warning and flashing are also introduced. New standardized procedure of access-control for various hazard zones, which could help to greatly contribute to the prevention of accidents in advance, is proposed considering the risk level and the condition of given hazard zones. The standardized procedure of access-management suggested in this study will take an effective role as one of safety guide lines for hazardous workshop of manufacturing industries.

A Study on the Achievement of Required Safety Integrity Level to Reduce Risk for SMR On-Site Hydrogen Refueling Stations (개질형 On-Site 수소충전소의 리스크 감소를 위해 요구되는 SIL 등급 달성 방안에 관한 연구)

  • Lee, Jin Ho;Lim, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • In recent years, hydrogen has received much attention as an alternative energy source to fossil fuels. In order to ensure safety from the increasing number of hydrogen refueling stations, prevention methods have been required. In this regard, this study suggested an approach to reduce the risk of hydrogen refueling station by increasing Safety Integrity Level (SIL) for a Steam Methane Reformer (SMR) in On-Site Hydrogen Refueling Station. The worst scenario in the SMR was selected by HAZOP and the required SIL for the worst scenario was identified by LOPA. To verify the required SIL, the PFDavg.(1/RRF) of Safety Instrumented System (SIS) in SMR was calculated by using realistic failure rate data of SIS. Next, several conditions were tested by varying the sensor redundancy and proof test interval reduction and their effects on risk reduction factor were investigated. Consequently, an improved condition, which were the redundancy of two-out-of-three and the proof test interval of twelve months, achieved the tolerable risk resulting in the magnitude of risk reduction factor ten times greater than that of the baseline condition.

A study on a Prediction of Dangerous Failure Rate in the Embedded System for the Track Side Functional Module (TFM에 대한 내장형제어기의 위험측고장률 예측에 관한 연구)

  • SHIN Ducko;LEE Jae-Hoon;LEE Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.170-175
    • /
    • 2005
  • This study presents a prediction of a failure rate in a safety required system that consists of a embedded control system, requiring a satisfaction of a quantitative safety requirement. International Standards are employed to achieve a regular procedures in the whole life cycle of a system, for the purpose of a prediction and a evaluation of a fault that might be able to be happened in a system. This International Standards uses SIL (Safety Integrity Level) to evaluate a safety level of a system. SIL is divided into 4 levels, from level 1 to level 4, and each level has functional failure rate and dangerous failure rate of a system. In this paper we describe the conventional method to predict the dangerous failure rate and propose a method using hazard analysis to predict the dangerous failure rate. The conventional method and the technique using hazard analysis to predict the dangerous failure rate are made a comparison through the control modules of the interlocking system in KTX. The proposed method verify better effectiveness for the prediction of the dangerous failure rate than that of the conventional method.

The study on improving the regulation for industrial accident rate level assessment of construction companies (건설업 산업재해발생률 산정·평가기준 개선방안 연구)

  • Park, Yong-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.17-24
    • /
    • 2016
  • The regulation for industrial accident rate level assessment of construction companies was introduced to the construction industry in the Republic of Korea since 1993 and has brought positive outcome on industrial accidents reduction at construction work sites. There were considerable decrease of industrial accident ratio and enforcing of contrators' safety organizations from the beginning of the regulation for industrial accident rate level assessment. In spite of these positive outcomes, there were some negative effects such as contractors' shrinking accident reports to keep good accident ratios since these figures had a great impact on pre-qualification stage of bidding when general contractors were competing for new construction projects. In addition, Comprehensive evaluation bid system, which replaces the lowest price bid system is applied to government-ordered construction projects since 2016. Comprehensive evaluation bid system includes construction company's accident rate as one of the evaluation items and carries out with the industrial accident rate level assessment of construction companies at the same time. The regulations of two systems have been called for improvement to unify these different procedures and standards which have led business stakeholders to confusion for several years. This study aims to devote on lessening shrinking accident reports and to reduce the waste of business stakeholders through changing the regulation for industrial accident rate level assessment.

Determination of Optimum Investment level for Safely Management by Process Risk Assessment at Gas Governor Station (가스공급기지에서 공정 위험성 평가에 의한 최적 안전관리 투자수준 결정)

  • Kim Tae-Ok;Jang Seo-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.1-6
    • /
    • 2003
  • This study has suggested a decision method which determine optimum investment level for safety management by process risk assessment at gas governor station. Hazard and operability study(HAZOP), fault tree analysis(FTA) and consequence analysis(CA) were carried out and potential accident cost and benefit for safety management were estimated. As a result, we could be found the trend of safety cost and benefit by the nonlinear regression method and could be determined the optimum investment level for safety management from analysis of safety management cost and potential accident cost.

  • PDF

Allocation of Design Assurance Level for KASS Based on International Standards (국제표준에 기반한 KASS 개발보증레벨 할당)

  • Bae, Dong-hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Since 2014, MOLIT (Ministry of Land, Infrastructure, and Transport) is carrying out a KASS project to develop and construct Korean SBAS. KASS can cause damage of human & properties if it has some problem during operation. Therefore, system safety assessment for KASS development is very important. Principal point of system safety assessment is the allocation of DAL(design assurance level) based on the hazard identification and classification. In this parer, the author conducts the allocation of DAL for KASS & its sub-systems based on the international standard(SAE ARP4761), which suggests a best practice of aviation system safety assessment. The result of this paper are the first step of system safety assessment, and can be used for further system safety assessment of KASS project.

A RESEARCH ON EFFECTIVE FIRE/DISASTER PROTECTION OF UTILITY TUNNEL IN KOREA

  • Park, Hung-joo;Son, Bong-sei;Jee, Nam-yong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.404-412
    • /
    • 1997
  • The pipes and cables buried below ground, which may have helped to improve city landscape, is becoming direct and indirect causes for various kinds of disaster in Korea. Every advantage from the use of utility tunnel can not be converted in a dollar since there is associated huge contribution to safe urban environment. The Korean government has a certain role to play in helping promote utility tunnels for the past years. Most recently, many utility tunnels have been being checked to find out safety level, especially fire safety level, and main problems and shortcomings are checked out as a result of this survey. Because the fire safety level of existing tunnel is low, possible approaches and solutions are presented according to the analysis of fire safety level. In order for these approaches to be effective, existing tunnel should be supplemented appropriately and extra equipment must be installed according to the solutions. Hopefully, by performing both improvement of existing utility tunnel that provide a fire/disaster proof and introducing new types of tunnel which influence utility management and maintenance, the recent disaster rate in Korea can be diminished up to a desirable rate in a near future.

  • PDF

Development of Performance Index for Ubiquitous Building Fire Safety System - Focused on Sprinkler System - (유비쿼터스 건물 화재안전시스템을 위한 성능지수 개발 - 스프링클러 시스템을 중심으로 -)

  • Kim, Jong-Hoon;Roh, Sam-Kew
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.23-30
    • /
    • 2009
  • For managing fire safety system in building by ubiquitous management system, the index system to express the performance level of fire protection system is demanded. If some component formed fire protection system such as sprinkler water supply system is breakdown, that will fall down the performance of fire protection capacity. Consequently, it will affects the level of fire safety of building management and energy response. Consequently, Building fire protection system could give performance level of fire protection condition and the level of fire safety in building. It will also contribute to the development of wide area fire safety management. This development of index system has been developed as a part of the development project of Ubiquitous building fire management system.

The Influences of the Awareness of Patient Safety Culture on Safety Care Activities among Nurse in small-medium Sized General Hospitals (중소병원 간호사의 환자안전인식이 안전간호활동에 미치는 영향)

  • Nam, Mun-Hee;Lim, Ji-Hye
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.349-359
    • /
    • 2013
  • The study was conducted to identify the perception of patient-safety and the level of safety care activity among nurses in small-medium sized general hospitals. Data were collected at three hospitals among 344 nurses on April 2012 and administered questionnaire regarding the perception of patient-safety and safety-care-activity. Data analyzed by using descriptive statistics, inferential statistics was used to determine comparison, correlation and association (Pearson correlation, t-test, ANOVA, Scheffe test, multiple regression). The results revealed that there were significant differences in the level of perception of patient-safety according to the nurses' career, time of work, and work department in their hospitals. And also there were significant differences in the level of safety-care-activity according to the nurses' age, position, marriage, the nurses' career, time of work in their hospitals. Nurses with higher perceived level of patient-safety performed more safety-care-activities. The findings of the study suggests that in order to improve the nurse's perceived level of patient-safety and safety-careactivities, the hospitals need to establish the policies that support patient-safety, improvement the environmental system, proper working atmosphere to ensure appropriate work time, regulation nurse-patient ratio are also required.

Development of a Quality Assurance Safety Assessment Database for Near Surface Radioactive Waste Disposal

  • Park J.W.;Kim C.L.;Park J.B.;Lee E.Y.;Lee Y.M.;Kang C.H.;Zhou W.;Kozak M.W.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.556-565
    • /
    • 2003
  • A quality assurance safety assessment database, called QUARK (QUality Assurance Program for Radioactive Waste Management in Korea), has been developed to manage both analysis information and parameter database for safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility in Korea. QUARK is such a tool that serves QA purposes for managing safety assessment information properly and securely. In QUARK, the information is organized and linked to maximize the integrity of information and traceability. QUARK provides guidance to conduct safety assessment analysis, from scenario generation to result analysis, and provides a window to inspect and trace previous safety assessment analysis and parameter values. QUARK also provides default database for safety assessment staff who construct input data files using SAGE(Safety Assessment Groundwater Evaluation), a safety assessment computer code.