• Title/Summary/Keyword: Safety Inspection Process

Search Result 250, Processing Time 0.027 seconds

Development of a Web-based Fatigue Life Evaluation System for Primary Components in a Nuclear Power Plant (원자력발전소 1 차 계통 주요기기에 대한 웹기반 피로수명평가 시스템 개발)

  • Seo, Hyong-Won;Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Choi, Sung-Nam;Jang, Ki-Sang;Hong, Sung-Yull
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.279-284
    • /
    • 2003
  • A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including regular in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage the integrity issues on a nuclear power plant. In this paper, a web-based fatigue life evaluation system for primary components in nuclear power plant is proposed. This system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant.

  • PDF

Determination of Agricultural Reservoirs Checklist by Analysis of the Weights (가중치 분석을 통한 농업용 저수지 평가항목 산정에 관한 연구)

  • Shin, Eun Chul;Shin, Chang Gun;Ryu, Jong Mo;Lee, Jong Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.81-86
    • /
    • 2013
  • The object of this study is to determine checklists of agriculture reservoirs which local government managed at routine inspection by Analysis Hierarchy Process (AHP). Suggest definition of agriculture reservoirs and distinguish type of destruction of reservoirs through the analysis of domestic reservoirs or overseas. Draw damage factors of reservoirs from survey on specific area. Combine type of destruction and damage factors of reservoirs for decision of evaluation type of reservoirs. Then, determine optimized routine inspection checklists for agriculture reservoirs and reservoirs by means of AHP considering a weighting.

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.

Detection and Comparison of Surface Defects in Pipe Welds (배관 용접부 표면결함 검출 및 비교)

  • Jung, Yoon-Soo;Gao, Jia-Chen;Ahn, Tae-Hyoung;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • At present, 24 nuclear power plants are in operation nationwide as the main power source responsible for about 27% of Korea's electricity, and five nuclear power plants are currently under construction. Issues of nuclear safety and reliability have always existed, but after the Fukushima accident, ensuring reliability has become an even more important issue for safety. Compared to other kinds of accidents, the initial response after a nuclear accident is more important than any other accident. Prior to accidents, it is important to be able to predict and judge the accident in advance for the sake of prevention. In this research, non-destructive inspection methods for existing pipe welds include radiographic, ultrasonic, magnetic particle practice, and liquid penetration testing. For this experiment, carbon steel pipes like that of the material used in nuclear pipes were adopted, and specimen welded to the flange (Flange) were manufactured. After testing, the weld specimen were not damaged through the infrared thermography (IRT) experiment. This study attempted to improve the safety of carbon steel pipes through a comparative analysis of finite element analysis.

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

Ergonomic Approach through Process Analysis of Delivery Work (택배 배송 작업의 공정분석을 통한 인간공학적 접근 방안)

  • Sejung Lee;Sangeun Jin;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • In response to the COVID-19 pandemic, the logistics industry in Korea has rapidly been expanding, with offline demand concentrating on online platforms owing to the development of digital infrastructure. This has increased the workload of courier drivers considerably, along with labor intensity. A delivery driver died recently from overwork due to the continuous increase in delivery volume, which raises social concerns. Delivery drivers work long hours, (over 12 hours) and are greatly affected by weather conditions, such as snow, rain, heat waves, and cold waves. In addition, they lack a fixed workplace; perform atypical work handling workpieces of various sizes, weights, and shapes; and spend a large amount of time driving as part of their work. This work involves a high level of tension and requires attention and concentration. Despite the frequency of industrial accidents in the courier industry, studies on safety and health to quantitatively analyze and systematize the work of courier workers are very scarce. Therefore, to define the work process necessary for investigating the harmful factors in delivery service and the work analysis, this study conducted interviews and on-site surveys to analyze the unit work of the delivery service by targeting delivery workers. In other words, a framework of unit work for work analysis was presented to enable research and analysis by considering the aforementioned characteristics of the courier industry. The process was broadly divided into work, transport, storage, delay, and inspection. Work was divided into loading, sorting, unloading, and door subcategories, and transportation was divided into vehicle, cart, and walking subcategories as well as 10 small processes. Moreover, 22 unit works were again drawn by conducting field surveys and interviews. The risk of unit work derived from this study was ergonomically evaluated, and the ergonomic analysis revealed that uploading and transportation were the most dangerous. The results of this study could be used as basic data for preventing industrial accidents among courier workers, whose work has increased with the logistics volume and the development of the logistics industry.

Real-Time Image Processing System for PDP Pattern Inspection with Line Scan Camera (PDP 패턴검사를 위한 실시간 영상처리시스템 개발)

  • Cho Seog-Bin;Baek Gyeoung-Hun;Yi Un-Kun;Nam Ki-Gon;Baek Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.17-24
    • /
    • 2005
  • Various defects are found in PDP manufacturing process. Detecting these defects early and reprocessing them is an important factor that reduces the cost of production. In this paper, the image processing system for the PDP pattern inspection is designed and implemented using the high performance and accuracy CCD line scan camera. For the preprocessing of the high speed line image data, the Image Processing Part (IPP) is designed and implemented using high performance DSP, FIFO and FPGA. Also, the Data Management and System Control Part (DMSCP) are implemented using ARM processor to control many IPP and cameras and to provide remote users with processed data. For evaluating implemented system, experiment environment which has an area camera for reviewing and moving shelf is made. Experimental results showed that proposed system was quite successful.

A Study on the Validation of Measured Data from the Seismic Accelerometers in the Safety Evaluation System of Public Buildings (공공건축물 안전성 평가를 위한 지진가속도 계측자료의 유효성 검증 방법에 대한 연구)

  • Jang, Won-Seok;Jeong, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.150-157
    • /
    • 2020
  • In this study, an algorithm was developed to validate the seismic acceleration measurement data of the seismic acceleration measurement system using measurement data from public buildings currently in operation. Through the results of the study, an algorithm was developed to detect errors and abnormalities in the measurement data itself and the process of generating real-time data (MMA/sec) and event measurement data (MiniSEED), which are the main data generated by the system, and the basic data for determining the direction of inspection through measurement data analysis. It is expected that this will be used as a guideline to determine whether or not the seismic acceleration measurement system, which was managed as receiving/not receiving, is inspected and abnormal types of conditions.

Automatic Defects Recognition System for Visual Inspection on Concrete Tunnel Lining (콘크리트 터널 라이닝의 외관조사를 위한 자동화 결함인식 시스템 개발)

  • Park, Seok-Kyun;Lee, Kang-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.873-880
    • /
    • 2008
  • When checking the state of deterioration or damage structures, regular visual inspection has very important role. At this point, a visual inspection is performed mainly by sketch or photography with a camera of inspectors. If that happens, it takes a lot of effort and time to inspect appearance damages. The purpose of this study is to develop the automatic recognition system for a more efficient and effective inspection of appearance damages. In the process, the image processing technology and the data management & analysis system for damage recognition are mainly developed and applied. This automatic recognition system enables inspectors or clients to obtain correct data that can recognize a damage, such as, crack, water leakage, efflorescence, delamination (peeling), spalling, etc. In addition, this study takes aim at the effect of secure safety, functional maintenance and extension of design lifetime according to build up continuous and systematic data management system.

The Classification of Manufacturing Work Processes to Develop Functional Work Clothes - With a Reference to the Automobile, Machine and Shipbuilding Industries -

  • Park, Ginah;Park, Hyewon;Bae, Hyunsook
    • Journal of Fashion Business
    • /
    • v.16 no.6
    • /
    • pp.21-35
    • /
    • 2012
  • In consideration of the injuries and deaths occurring at manufacturing sites due to the use of inappropriate work clothes or safety devices, this study aims to categorize manufacturing work processes to develop functional work clothes for heavy industries including the automobile, machine and shipbuilding industries in South Korea. Defining the features of the work environments and work postures of these industries provided for a categorization of the work processes which would enable the development of suitable work clothes for each work process' category. The results of the study based on a questionnaire survey are as follows: Work process category 1, including steel panel pressing and auto body assembly, final inspection (in automobile) and inspection (in machine), requires work clothes with upper body and arm mobility and performance to protect from the toxic fume factor. Work process category 2, consisting of welding (in automobile), cutting-and-forming (in machine) and attachment-and-construction (in shipbuilding), requires clothing elasticity, durability and heat and fire resistance. Work process category 3 comprising welding and grinding in the machine and shipbuilding industries, requires work clothes' tear resistance and elasticity, particularly for lateral bending mobility, and work clothes' sleeves' and pants' hemlines with sealed designs to defend against iron filing penetration, as well as incombustible and heat-resistant material performance. Finally, work process category 4, including painting in machine and shipbuilding, requires work clothes with waterproofing, air permeability, thermal performance, elasticity, durability and abrasion resistance.