• Title/Summary/Keyword: Safety Door

Search Result 327, Processing Time 0.023 seconds

A study of occupant responses in side impact collision (측면충돌시 승객의 거동에 대한 연구)

  • Youn, Y.H.
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.243-251
    • /
    • 1993
  • With the recent issuance of a dynamic side impact test regulation in the Federal Motor Vehicle Safety Standard in the United States of America, many aspects of occupant protection in side impact crashes have been under investigation. Many investigations of real world accidents, crash test results and simulation studies have established that in side impact crashes of passenger cars, thoracic and pelvic injuries of occupant are, large part, caused by occupants' impact against the interior side of the vehicle, primarily the door. This paper is concerned with the development of a lumped mass computer model, which simulates the interaction of a struck car door and an adjacent seated occupant in side impacr, based CTP code which has been successfully used in vehicle and occupant simulation. New model developments include elimination of influence of vehicle side structure stiffness in the occupant injury responses. The model was used to investigated the effect of various door padding characteristics on occupant responses to improve vehicle safety performance. The evaluation of different crush properties of door padding have also focused to understand of behavior of impacted occupant. Results from simulations, The effects of both material coefficients $C_{f}$ and p were illustrated in terms of occupant injury criteria TTI and pelvis.

  • PDF

Optimization of the Passenger Safety Door(PSD) Part using Response Surface Method (반응표면법에 의한 승강장 안전문(PSD) 부재의 최적화)

  • Lee, Jae-Hwan;Kim, Jin-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.73-79
    • /
    • 2009
  • In this paper, the structural analysis and optimization of the door supporting rail structure in the header box located at the top of the aluminum passenger safety door(PSD) at the subway station, which opens and closes regularly, is performed. In case the simple fixed boundary condition is used for the bolt fixture on the supporting rail where the glass door is moving, excessive stresses are obtained. Therefore, more realistic finite element modeling of the bolts is used at the bolt fixture in the whole structure in order to obtain the more physically acceptable FEM results. As a result, fatigue life of twenty years of the structure is obtained to satisfy the design object. Also the optimal design of cross section of the rail part is performed using the response surface method and 15% of weight of the supporting rail part on the door is reduced.

Experimental Study on Steel Truss Structure for Safety Lintel in Masonry Construction -Focusing on Door Frame Top Lintel at Typical Floor Apartment- (조적공사 인방보용 강재트러스 구조물에 관한 실험적 연구 - 아파트 기준층 문틀 상단 인방재를 중심으로 -)

  • Kim, Young-Chun;Yoo, Hyun-Dong;Choi, Woo-Jong;Jeong, Sang-Moo;Kang, Myung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.29-35
    • /
    • 2013
  • The research is to verify by experiments whether the steel truss structure is able to withstand the load of cement bricks of upper part of a door for the safe use of lightweight steel truss structure instead of concrete lintel which is to be installed at upper part of door frame in building cement bricks for apartment construction. The steel truss is designed in order not to disturb bricks-building and the shape of structure was verified by bending test. According to experiments result, camber was applied to steel structure that enabled construction work to be improved and was proved effective for the prevention of accidents by cement bricks-building load test.

A Study on the Reliability Analysis Methodology of Passenger Door System of Electrical Type (전기식 출입문 시스템의 신뢰도 분석기법에 관한 연구)

  • Kim, Chul Sub;Lee, Hi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • The door system for railway vehicles is the critical device directly influences on safety and satisfaction of passengers, Recently, electrical type of passenger door system is widely used for EMU type train instead of pneumatic type of passenger door system. The estimation of MTBF and failure rates for electrical type door system is essential. The manufacturor simply provides intrinsic reliability data for the railway operator. But actual reliability data based on operation and maintenance data is not complying with intrinsic reliability. In this study, operation and failure data associated with electrical door system were analyzed in order to determine actual MTBF and failure data. Intrinsic reliability data and service reliability data were studied to finallize much more practical and reliable actual reliability. Relax 2011 was used to predict intrinsic reliability and 217Plus model was also used to estimate of actual reliability data based on field data. Furthermore, it is necessary to keep studying on reliability prediction methodology and applying it in the field and doing research on improvement of reliability through feedback as well.

CAE Analysis on Strength and Fatigue of Rear Door of Passenger Car (승용차량 리어도어의 강도 및 피로에 대한 CAE해석)

  • Ko, Jong Hyoun;Kang, Dae Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.63-69
    • /
    • 2014
  • This paper studies the strength, fatigue sensitivity, safety factor and lifetimes by means of structural and fatigue analyses of different models of rear doors upon the opening of doors and windows leading to severe fatigue fractures of the window motor components of rear doors. The simulation models were a standard model and other models. The other models, which are denoted here as models I and II, were modified versions of the standard model, with a rib of 3mm and a thickness of 2mm as compared to the standard model. The door was modelled with CATIA V5 and analyzed with the ANSYS program. The material of the rear door was cold rolled steel (DDQ). From the study results, the standard model and model I were confirmed to be less safe upon the opening of the door as compared to the opening of a window in terms of fatigue, but model II was found to be safe for both door and window openings.

Design and Implementation of Hybrid VR lock system by Arduino Control (아두이노 제어를 통한 증강현실 도어록 설계 및 구현)

  • Lee, Kyung-Mu;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.3
    • /
    • pp.97-103
    • /
    • 2014
  • Recently, digital door locks have been widely used as physical security devices for the door. Although they are convenient compared to the existing lock system, they have the problem of being opened by an electric shock. In this study, to improve safety, a method to hide the door-lock device inside and to display the door-lock on a user's smart-phone screen through the augmented reality is suggested. Furthermore, an additional function has been added which provides memo notes to facilitate communication among family members. The results of this study have been implemented by using motors to control locks, Wi-Fi shield, Arduino, and a virtually created door and showed desirable experimental results.

Improvement on Access Control of Hazard Zone in a Steel Manufacturing Industry (철강 제조업에서의 유해.위험구역 출입 관리 방안)

  • Seo, Seong-Hwa;Kim, Min;Weon, Jong-Il;Woo, Heung-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.63-68
    • /
    • 2011
  • Access-control of hazard zone in a steel manufacturing industry is studied in terms of safety management. Based on the results of risk evaluation for hazard zone, three risk zones with low, middle and high level are categorized. These zones have different color door and locking shape depending on their risk levels. At the high level, red door and key-based locking system are employed to accessed-controled path. Furthermore, tagout, lockout, interlock system for emergency stop, warning and flashing are also introduced. New standardized procedure of access-control for various hazard zones, which could help to greatly contribute to the prevention of accidents in advance, is proposed considering the risk level and the condition of given hazard zones. The standardized procedure of access-management suggested in this study will take an effective role as one of safety guide lines for hazardous workshop of manufacturing industries.

Study on the Analysis of Differential Pressure of the Access Door for a Smoke Control Zone and the Effectiveness of the Measurement Criteria of its Opening Force (제연구역 출입문의 차압 및 개방력 측정기준의 실효성 분석에 관한 연구)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.24-30
    • /
    • 2012
  • The purpose of this study is to analyze the problem in measuring the differential pressure between the fire area and the neighboring smoke control zone as well as the opening force of a fire door and to present the actual values measured by an objective method. NFSC 501A specifies that the force necessary to open an access door when operating a smoke control system shall be less than 110 N. When the smoke control system does not operate in the space where it is installed, the door opening force can be measured by the test method in KS F 2805. However, when the smoke control system operates, additional opening force is required to overcome the force generated by the differential pressure between the fire area and smoke control room. Therefore, it can be seen that the method proposed by the standard has insufficient reliability. The analog measuring device and digital measuring device showed that the opening forces, $F_a$ and $F_d$, of the fully closed door before the smoke control system were 27.8 N and 27.4 N, respectively. When the door remained open by $5^{\circ}$, the opening forces, $F_a$ and $F_d$, were 33 N and 33.6 N, respectively. When the smoke control system operated and the door was fully closed, the door opening forces, $F_a$ and $F_d$, were 77.6 N and 76.0 N, respectively. Therefore, since the door opening forces are different from the criteria presented by KS F 2805, it is required to review the criteria appropriately.

Geometric Effects of Compartment Opening on Fuel-Air Mixing and Backdraft Behavior (개구부의 기하학적 형상이 구획실의 연료-공기 혼합특성 및 백드래프트 거동에 미치는 영향)

  • Ha, Suim;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • Mixing characteristics and backdraft dynamics were investigated using large eddy simulation for compartments initially filled with methane fuel. Four different opening geometries, i.e. conventional door opening case (Door) and the cases where horizontal door was implemented on the upper ($Slot_U$), middle ($Slot_M$) and lower part ($Slot_L$) of side wall, were considered in the simulations. For cases without ignition, the amounts of inflow oxygen and outflow fuel from the compartment opening were, from largest to smallest, Door > $Slot_U$ ~ $Slot_M$ > $Slot_L$. However, the fuel and oxygen were the best mixed for the $Slot_U$ case while the fuel and oxygen were not well mixed and in relatively separated two layers for the $Slot_L$ case. The global equivalence ratio defined by the amounts of fuel and oxygen in the compartment was not correlated reasonably with the peak pressure of backdraft. The peak pressure during backdraft was the highest for the $Slot_U$ case, a well mixed condition of fuel and air, and backdraft was not found for the $Slot_L$ where the pressure rise was not so high due to the mixing status. The peak pressures for the Door and $Slot_M$ cases were in between Door and $Slot_L$ cases. The peak pressure during backdraft was well correlated with the total amount of heat release until the instance of backdraft occurrence.

The Section Design of Press Door Impact Beam for Improving Bending Strength (굽힘 강도 향상을 위한 프레스 도어 임팩트 빔의 단면 설계)

  • Jo, Kyeongrae;Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.74-81
    • /
    • 2017
  • The door impact beam of the side-impacted vehicle plays a key role in securing occupant safety by preventing intrusion from the impacting vehicle. Despite the low production cost, the press door impact beam has been adopted sparingly because of the strength inferiority. In this study, the design technologies of the press beam aimed at improving bending strength were investigated. First, the effect of the section shape and size was examined. Next, thickness and material strength were increased. Also, the TRB beam application was simulated by varying combined thickness. Some TRB beams with reduced weight exhibited bending strength over the strength of the pipe beam. Then, the beam with a closed center section also showed remarkably enhanced maximum bending strength.