• Title/Summary/Keyword: Safety Cup

Search Result 133, Processing Time 0.02 seconds

Reliability of Combustion Properties of MSDS(Material Safety Data Sheet) of tert-Amylalcohol(TAA) (tert-Amylalcohol(TAA)의 물질안전보건자료(MSDS) 연소특성치의 신뢰도)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.17-24
    • /
    • 2019
  • The combustion properties of the flammable substance used in industrial fields include lower/upper flash point, lower/upper explosion limit, autoignition temperature(AIT), fire point, and minimum oxygen concentration(MOC) etc.. The accurate assessment of these characteristics should be made for process and worker safety. In this study, tert-amylalcohol(TAA), which is widely used as a solvent for epoxy resins, oxidizers of olefins, fuel oils and biomass, was selected. The reason is that there are few researches on the reliability of combustion characteristics compared to other flammable materials. The flash point of the TAA was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the TAA was measured by ASTM 659E. The lower/upper explosion limits of the TAA was estimated using the measured lower/upper flash points by Setaflash tester. The flash point of the TAA by using Setaflash and Pensky-Martens closed-cup testers were experimented at 19 ℃ and 21 ℃, respectively. The flash points of the TAA by Tag and Cleveland open cup testers were experimented at 28 ℃ and 34 ℃, respectively. The AIT of the TAA was experimented at 437 ℃. The LEL and UEL calculated by using lower and upper flash point of Setaflash were calculated at 1.10 vol% and 11.95 vol%, respectively.

Flash Point Measurement of n-Propanol+n-Hexanol and n-Butanol+n-Hexanol Systems Using Seta Flash Closed Cup Tester (Seta Flash 밀폐식 장치를 이용한 n-Propanol+n-Hexanol계와 n-Butanol+n-Hexanol계의 인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.34-39
    • /
    • 2019
  • Flash point is the important indicator to determine fire and explosion hazards of liquid solutions. In this study, flash points of n-propanol+n-hexanol and n-butanol+n-hexanol systems were obtained by Seta flash tester. The methods based on UNIFAC equation and multiple regression analysis were used to calculate flash point. The calculated flash point was compared with the experimental flash point. Absolute average errors of flash points calculated by UNIFAC equation are $2.9^{\circ}C$ and $0.6^{\circ}C$ for n-propanol+n-hexanol and n-butanol+n-hexanol, respectively. Absolute average errors of flash points calculated by multiple regression analysis are $0.5^{\circ}C$ and $0.2^{\circ}C$ for n-propanol+ n-hexanol and n-butanol+n-hexanol, respectively. As can be seen from AAE, the values calculated by multiple regression analysis are noticed to be better than the values by the method based on UNIFAC eauation.

Emission Characteristics of Gasoline/ethanol Mixed Fuels for Vehicle Fire Safety Design (차량화재 안전설계를 위한 휘발유/에탄올 혼합연료의 연소생성물 배출 특성)

  • Kim, Shin Woo;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • Combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally for vehicle fire safety. The numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. The simulating cases with three independent variables, i.e. ethanol mole fraction, equivalence ratio and residence time, were designed to predict and optimized systematically based on the response surface method (RSM). The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence need to adjust combustion itself rather than an after-treatment system. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires in the cup burner. The results show that soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. For soot morphology by TEM sampling, the incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

The Study on the Compatibility of MSDS by Means of Measurement of Combustible Properties for Isobutylalcohol(IBA) (이소부틸알코올(IBA)의 연소특성치 측정에 의한 MSDS의 적정성 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • For the safe handling of isobutylalcohol(IBA), this study was investigated the explosion limits of isobutylalcohol in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. By using the literatures data, the lower and upper explosion limits of isobutylalcohol recommended 1.7 Vol% and 10.9 Vol.%, respectively. The lower flash point of isobutylalcohol by using Setaflash and Penski-Martens closed-cup testers were experimented $25^{\circ}C$ and $30^{\circ}C$, respectively. The lower flash point isobutylalcohol by using Tag and Cleveland open cup testers were experimented $36^{\circ}C$ and $39^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for isobutylalcohol. The experimental AIT of isobutylalcohol was $400^{\circ}C$.

A Study on the Reliability of the Combustible Properties for Acrylic Acid (아크릴릭산의 연소특성치의 신뢰성 연구)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2015
  • For the reliability of the combustible properties of arylic acid, this study was investigated the explosion limits of acrylic acid in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of acrylic acid by using Setaflash and Pensky-Martens closed-cup testers were experimented in $48^{\circ}C$ and $51^{\circ}C$, respectively. The lower flash points of arylic acid by using Tag and Cleveland open cup testers were experimented in $56^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acrylic acid. The AIT of acrylic acid was experimented as $417^{\circ}C$. The lower explosion limit(LEL) and the upper explosion limit(UEL) by the measured the lower flash point and the upper flash point of acrylic acid were calculated as 2.2 Vol% and 7.9 Vol%, respectively.

The Calculation of Flash Point for n-Nonane+n-Decane+n-Tridecane System by Raoult's Law and Multiple Regression Analysis (라울의 법칙과 다중회귀분석법에 의한 n-Nonane+n-Decane+n-Tridecane 계의 인화점 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • The flash point is one of the most important properties to characterize fire and explosion hazard of flammable liquid mixture. In this paper, the flash points of ternary liquid mixture, n-nonane+n-decane+n-tridecane system, were measured using Seta flash closed cup tester. The measured values were compared with the calculated values using Raoult's law and multiple regression analysis. The absolute average errors(AAE) of the results calculated by Raoult's law is $0.6^{\circ}C$. The absolute average errors of the results calculated by multiple regression analysis is $0.4^{\circ}C$. As can be seen from AAE, the calculated values based on multiple regresstion analysis were found to be better than those based on Raoult's law.

Measurement and Prediction of Combustuion Properties of di-n-Buthylamine (디노말부틸아민의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.42-47
    • /
    • 2019
  • In this study, combustion characteristics were measured by selecting di-n-buthylamine, which is widely used as an emulsifier, insecticide, additive, rubber vulcanization accelerator, corrosion inhibitor, and raw material for dye production. The flash point of the di-n-buthylamine was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the di-n-buthylamine was measured by ASTM 659E. The explosion limits of the di-n-buthylamine was calculated using the measured flash points by Setaflash tester. The flash point of the di-n-buthylamine by using Setaflash and Pensky-Martens closed-cup testers were experimented at 38 ℃ and 43 ℃, respectively. The flash points of the di-n-buthylamine by Tag and Cleveland open cup testers were experimented at 48 ℃. The AIT of the di-n-buthylamine was experimented at 247 ℃. The LEL and UEL calculated by using lower and upper flash points of Setaflash tester were calculated at 0.69 vol% and 7.7 vol%, respectively. The measurement of the flash point measurement and the calculation method of the explosion limit prediction presented in this study can be used to study the fire and explosion characteristics of the other combustible liquids.

The Study on Measurement and Prediction of Combustible Properties for Aniline (아닐린의 연소특성치의 측정 및 예측에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2014
  • For the safe handling of aniline, this study was investigated the explosion limits of aniline in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash point of aniline by using Setaflash and Penski-Martens closed-cup testers were experimented $66^{\circ}C$ and $73^{\circ}C$, respectively. The lower flash point aniline by using Tag and Cleveland open cup testers were experimented $72^{\circ}C$ and $78^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for aniline. The experimental AIT of aniline was $590^{\circ}C$. The calculated LEL and UEL by using the measured low flash point and upper flash point were 1.16 Vol.% and 8.36 Vol.%, respectively.

The Measurement of the Fire and Explosion Properties for 2-Methyl-1-butanol (2-Methyl-1-butanol의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • For the safe handling of 2-methyl-1-butanol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of 2-methyl-1-butanol was experimented. And, the lower explosion limit of 2-methyl-1-butanol was calculated by using the lower flash point obtained in the experiment. The flash points of 2-methyl-1-butanol by using the Setaflash and Pensky-Martens closed-cup testers measured $40^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of 2-methyl-1-butanol by using the Tag and Cleveland open cup testers are measured $49^{\circ}C$ and $47^{\circ}C$. The AIT of 2-methyl-1-butanol by ASTM 659E tester was measured as $335^{\circ}C$. The lower explosion limit by the measured flash point $40^{\circ}C$ was calculated as 1.30 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Improvement of Collection Efficiency of Electrostatic Precipitator (전기 집진기의 집진 효율 향상에 관한 연구)

  • Ahn, Kook-Chan;Kim, Bong-Hwan;Lee, Gwang-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.25-30
    • /
    • 2002
  • This paper demonstrates the effects of dust electrical resistivity on electrostatic precipitability. The effects of gas temperature, velocity and humidity on the collection efficency were considered by used of coal fly ashes from fluidized bed combustion boiler. The experiments for collection efficiency were carried out in the pilot plant. The ashes which have non-spherical geometry and high electrical resistivity were used. Electrical resistivity is an important property for the collection efficiency in the electrostatic precipitators. Fly ash resistivity as a function of temperature up $350{\circ}C$ and water concentration(up to 15%) has been experimentally investigated using the resistivity test equipment consisted of the movable electrode, dust cup, and furnace. As the resistivity of fly ash in the operating temperature($150{\circ}C$) of an electrostatic precipitator was measured higher than $1010{\Omega}{\cdot}$cm, flue gas conditioning in the electrostatic precipitator to reduce the resistivity of fly ash is required.