• Title/Summary/Keyword: Safety Assessment of Ship

Search Result 290, Processing Time 0.02 seconds

The Safety Assessment of Small WIG Craft in the 20-Passenger Class (20인승급 소형 위그선의 안전성 평가)

  • Lee, Soon-Sup;Lee, Jong-Kap
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.179-188
    • /
    • 2009
  • WIG crafts are a high speed vessel with features of dynamic supported craft. These crafts, which are predominantly of light weight and operate any substantially greater speeds than conventional craft such as bulk carrier, tanker, container ship, etc., could not be accommodated under traditional maritime safety instruments. It means that there is the need for risk and safety levels to be assessed on a holistic basis, recognizing that high levels of operator training, comprehensive and thoroughly implemented procedures, high levels of automation and sophisticated software can all make significant contributions to risk reduction. To response this requirement, the Interim Guideline for WIG craft(MSC/Circ.1054) were developed in the view of the configuration of WIG craft, which fall between the maritime and aviation regulatory regimes. This paper reviews a safety assessment process and methodology to be used in the design phase of a new ship. The process and methodology is based on the risk-based approach and is applied to safety assessment in concept development phase of small WIG craft in the 20-person class.

Determination of Simulation Conditions for Ship-handling Safety Assessment (선박운항 안전성 평가를 위한 시뮬레이션 조건 도출 연구)

  • Gong, In-Young;Kwon, Se-Hyug;Kim, Sun-Young
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.207-213
    • /
    • 2008
  • Ship-handling simulation system has been used for maritime traffic safety assessment for harbor and fairway. There exist various environmental conditions under which ship may navigate along a fairway or in harbor. Due to the time and budget limitations, however, ship-handling simulations are usually carried out for very limited number of environmental conditions. In this paper, statistical method for effective and systematic determination of real time simulation conditions is suggested and applied to the maritime traffic safety assessment problems. In the empirical study, the principal component analysis method and the concept of empirical cumulative distribution function are suggested to estimate synthetic navigational difficulty and to select simulation conditions which would impose high difficulty on shiphandling.

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.

Development of a Collision Risk Assessment System for Optimum Safe Route (최적안전항로를 위한 충돌위험도 평가시스템의 개발)

  • Jeon, Ho-Kun;Jung, Yun-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.670-678
    • /
    • 2018
  • In coastal waters where the traffic volume of the ship is high, there is a high possibility of a collision accident because complicated encounter situations frequently occurs between ships. To reduce the collision accidents at sea, a quantitative collision risk assessment is required in addition to the navigator's compliance with COLREG. In this study, a new collision risk assessment system was developed to evaluate the collision risk on ship's planned sailing routes. The appropriate collision risk assessment method was proposed on the basis of reviewing existing collision risk assessment models. The system was developed using MATLAB and it consists of three parts: Map, Bumper and Assessment. The developed system was applied to the test sea area with simple computational conditions for testing and to actual sea areas with real computational conditions for validation. The results show the length of own ship, ship's sailing time and sailing routes affect collision risks. The developed system is expected to be helpful for navigators to choose the optimum safe route before sailing.

A Study on the Fire Safety Assessment of a Ship (선박의 화재안전도에 관한 연구)

  • Jung-Hoon Lee;Jae-Ohk Lee;Young-Soon Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.116-122
    • /
    • 2001
  • In this paper, to make a base of the fire safety assessment about ship's fire protection design and Classification Society rule, statistical informations and modeling techniques for the fire safety engineering are investigated and probabilistic safety assessment methods in the structural reliability engineering are introduced. FSEM(Fire Safety Evaluation Module) developed in this paper calculates the probability of fatality, which can be used as an index of fire safety. FSEM is used to calculate the probability of fatality of the evacuees in a small room installed according to the rules for fire-proof. Sensitivity analysis is executed to investigate FSEM's applicability to ship. From results, the necessity of new criterion for ship's fire safety design, the need to study the human behavior in the evacuation from fire, and the development of new fire progress model considering special situations in ships are acknowledged.

  • PDF

A Study on the Allowable Range of Overhanging Berthing at the Port of Ulsan

  • Kim, Seungyeon;Yu, Yongung;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • As vessels become larger and competition between ports intensifies, there has been an increase in the number of cases where vessels that exceed the available berths are berthed at the pier. Therefore, there has been an increase in the number of cases in which the bow or stern of a ship is projected and moored. The risk of overhanging berthing is that mooring safety can be compromised because it is not possible to connect the bow and stern mooring line to the ship properly. In addition, collision accidents may occur between moving vessels if the view of a vessel moving in the port is obstructed. Therefore, in this study, the simulation of mooring safety was performed according to the overhanging range in Piers No. 6 and 7 in Ulsan's main port to propose the overhanging limit and operational standards according to each ship. As a result of the assessment, 30,000 DWT bulkers are able to overhang up to 0.75B, and 50,000 DWT bulkers can overhang up to 0.50B. The results of this study are expected to be used as basic data for setting the allowable overhang limit, as well as clear usage criteria for safe unloading operations.

Cyber Threat and Vulnerability Analysis-based Risk Assessment for Smart Ship

  • Jeoungkyu Lim;Yunja Yoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.3
    • /
    • pp.263-274
    • /
    • 2024
  • The digitization of ship environments has increased the risk of cyberattacks on ships. The smartization and automation of ships are also likely to result in cyber threats. The International Maritime Organization (IMO) has discussed the establishment of regulations at the autonomous level and has revised existing agreements by dividing autonomous ships into four stages, where stages 1 and 2 are for sailors who are boarding ships while stages 3 and 4 are for those not boarding ships. In this study, the level of a smart ship was classified into LEVELs (LVs) 1 to 3 based on the autonomous levels specified by the IMO. Furthermore, a risk assessment for smart ships at various LVs in different risk scenarios was conducted The cyber threats and vulnerabilities of smart ships were analyzed by dividing them into administrative, physical, and technical security; and mitigation measures for each security area were derived. A total of 22 cyber threats were identified for the cyber asset (target system). We inferred that the higher the level of a smart ship, the greater the hyper connectivity and the remote access to operational technology systems; consequently, the greater the attack surface. Therefore, it is necessary to apply mitigation measures using technical security controls in environments with high-level smart ships.

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.133-140
    • /
    • 2007
  • Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimizea ETA(estimated time of arrival) and fuel consumption that shipping company and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Finally, It is assistance measure for ship's optimum navigation route safety planning & assessment.

  • PDF

Force Equilibrium-Based Safety Assessment System for Cargo Securing of Car Ferries

  • Kim, Younghun;Choung, Joonmo;Jo, Huisang;Lee, Kyounghoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.112-128
    • /
    • 2016
  • Capsize and sinking of a coastal car ferry has occurred in a Korean offshore area and has caused hundreds of human casualties. The rapid turn and improper cargo loading are inferred as the main reasons of the accident. It has motivated to develop a new system of cargo securing with improved safety of Korean coastal ferries. This paper provides a new approach regarding cargo securing safety assessment which is purely based on force equilibrium conditions, because IMO CSS is suitable for the ocean-going vessels. The mathematical formulations are presented for the new approach. This paper also introduces a newly developed safety assessment system based on the new approach. Most outstanding features are that it can utilize acceleration data produced from hydrodynamic motion analyses or assumed maximum extents of ship motion components and that securing safety assessment is simultaneously possible for unlimited number of cargoes with finite number of lashings.