• Title/Summary/Keyword: Safe Network

검색결과 601건 처리시간 0.035초

Adjuvanticity of Processed Aloe vera gel for Influenza Vaccination in Mice

  • Eun-Jung Song;Erica Espano;Jeong-Hyun Nam;Jiyeon Kim;Kyu-Suk Shim;Eunju Shin;Young In Park;Chong-Kil Lee;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • 제20권4호
    • /
    • pp.31.1-31.14
    • /
    • 2020
  • The effectiveness of current influenza vaccines is considered suboptimal, and 1 way to improve the vaccines is using adjuvants. However, the current pool of adjuvants used in influenza vaccination is limited due to safety concerns. Aloe vera, or aloe, has been shown to have immunomodulatory functions and to be safe for oral intake. In this study, we explored the potential of orally administered processed Aloe vera gel (PAG) as an adjuvant for influenza vaccines in C57BL/6 mice. We first evaluated its adjuvanticity with a split-type pandemic H1N1 (pH1N1) Ag by subjecting the mice to lethal homologous influenza challenge. Oral PAG administration with the pH1N1 Ag increased survival rates in mice to levels similar to those of alum and MF59, which are currently used as adjuvants in influenza vaccine formulations. Similarly, oral PAG administration improved the survival of mice immunized with a commercial trivalent influenza vaccine against lethal homologous and heterologous virus challenge. PAG also increased hemagglutination inhibition and virus neutralization Ab titers against homologous and heterologous influenza strains following immunization with the split-type pH1N1 Ag or the commercial trivalent vaccine. Therefore, this study demonstrates that PAG may potentially be used as an adjuvant for influenza vaccines.

Apply evolved grey-prediction scheme to structural building dynamic analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.19-26
    • /
    • 2024
  • In recent years, an increasing number of experimental studies have shown that the practical application of mature active control systems requires consideration of robustness criteria in the design process, including the reduction of tracking errors, operational resistance to external disturbances, and measurement noise, as well as robustness and stability. Good uncertainty prediction is thus proposed to solve problems caused by poor parameter selection and to remove the effects of dynamic coupling between degrees of freedom (DOF) in nonlinear systems. To overcome the stability problem, this study develops an advanced adaptive predictive fuzzy controller, which not only solves the programming problem of determining system stability but also uses the law of linear matrix inequality (LMI) to modify the fuzzy problem. The following parameters are used to manipulate the fuzzy controller of the robotic system to improve its control performance. The simulations for system uncertainty in the controller design emphasized the use of acceleration feedback for practical reasons. The simulation results also show that the proposed H∞ controller has excellent performance and reliability, and the effectiveness of the LMI-based method is also recognized. Therefore, this dynamic control method is suitable for seismic protection of civil buildings. The objectives of this document are access to adequate, safe, and affordable housing and basic services, promotion of inclusive and sustainable urbanization, implementation of sustainable disaster-resilient construction, sustainable planning, and sustainable management of human settlements. Simulation results of linear and non-linear structures demonstrate the ability of this method to identify structures and their changes due to damage. Therefore, with the continuous development of artificial intelligence and fuzzy theory, it seems that this goal will be achieved in the near future.

Proposal of elevator calling intelligent IoT system using smartphone Bluetooth (스마트폰 블루투스를 이용한 승강기 호출 지능형 IoT 시스템 제안)

  • Si Yeon Kim;Sun-Kuk Noh
    • Smart Media Journal
    • /
    • 제13권1호
    • /
    • pp.60-66
    • /
    • 2024
  • The Internet of Things, which began by connecting sensors through a network, is developing into an intelligent IoT by combining it with artificial intelligence technology. Elevators are essential for high-rise buildings in the city, and elevators move from floor to floor and perform the functions of transporting goods and moving users. It is necessary to provide safe and convenient services for elevator users in high-rise buildings or special environments (hospitals, etc.). In an environment where rapid patient transportation is important, such as large hospitals, there is a problem that hospital staff and the general public often use the elevator for patients. In particular, when moving patients where golden time is important, the waiting time to board the elevator is a major hindrance. In order to solve this problem, this study proposes an intelligent IoT system for elevator calling using smartphone Bluetooth. First, we experimented with the elevator calling IoT system using smartphone Bluetooth, and as a result of the experiment, it was confirmed that it can authenticate elevator users and reduce unnecessary waiting time for boarding. In addition, we propose an intelligent IoT system that connects with intelligent IoT.

A Study on the Security Requirements Analysis to Build a Zero Trust-Based Remote Work Environment (제로트러스트 기반의 원격 근무 환경을 구축하기 위한 보안요구사항 분석 연구)

  • Hae-na Kim;Ye-jun Kim;Seung-joo Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제34권1호
    • /
    • pp.83-102
    • /
    • 2024
  • Recently, as the use of the cloud increases year by year and remote work within the enterprise has become one of the new types of work, the security of the cloud-based remote work environment has become important. The introduction of zero trust is required due to the limitations of the existing perimeter security model that assumes that everything in the internal network is safe. Accordingly, NIST and DoD published standards related to zero trust architecture, but the security requirements of that standard describe only logical architecture at the abstract level. Therefore, this paper intends to present more detailed security requirements compared to NIST and DoD standards by performing threat modeling for OpenStack clouds. After that, this research team performed a security analysis of commercial cloud services to verify the requirements. As a result of the security analysis, we identified security requirements that each cloud service was not satisfied with. We proposed potential threats and countermeasures for cloud services with zero trust, which aims to help build a secure zero trust-based remote working environment.

Efficacy and safety of endoscopic submucosal dissection for colorectal dysplasia in patients with inflammatory bowel disease: a systematic review and meta-analysis

  • Talia F. Malik;Vaishnavi Sabesan;Babu P. Mohan;Asad Ur Rahman;Mohamed O. Othman;Peter V. Draganov;Gursimran S. Kochhar
    • Clinical Endoscopy
    • /
    • 제57권3호
    • /
    • pp.317-328
    • /
    • 2024
  • Background/Aims: In this meta-analysis, we studied the safety and efficacy of endoscopic submucosal dissection (ESD) for colorectal dysplasia in patients with inflammatory bowel disease (IBD). Methods: Multiple databases were searched, and studies were retrieved based on pre-specified criteria until October 2022. The outcomes assessed were resection rates, procedural complications, local recurrence, metachronous tumors, and the need for surgery after ESD in IBD. Standard meta-analysis methods were followed using the random-effects model, and I2% was used to assess heterogeneity. Results: Twelve studies comprising 291 dysplastic lesions in 274 patients were included with a median follow-up of 25 months. The pooled en-bloc resection, R0 resection, and curative resection rates were 92.5% (95% confidence interval [CI], 87.9%-95.4%; I2=0%), 81.5% (95% CI, 72.5%-88%; I2=43%), and 48.9% (95% CI, 32.1%-65.9%; I2=87%), respectively. The local recurrence rate was 3.9% (95% CI, 2%-7.5%; I2=0%). The pooled rates of bleeding and perforation were 7.7% (95% CI, 4.5%-13%; I2=10%) and 5.3% (95% CI, 3.1%-8.9%; I2=0%), respectively. The rates of metachronous recurrence and additional surgery following ESD were 10% (95% CI, 5.2%-18.2%; I2=55%) and 13% (95% CI, 8.5%-19.3%; I2=54%), respectively. Conclusions: ESD is safe and effective for the resection of dysplastic lesions in IBD with an excellent pooled rate of en-bloc and R0 resection.

Improved Deep Learning-based Approach for Spatial-Temporal Trajectory Planning via Predictive Modeling of Future Location

  • Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1726-1748
    • /
    • 2024
  • Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Customized Evacuation Pathfinding through WSN-Based Monitoring in Fire Scenarios (WSN 기반 화재 상황 모니터링을 통한 대피 경로 도출 알고리즘)

  • Yoon, JinYi;Jin, YeonJin;Park, So-Yeon;Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제41권11호
    • /
    • pp.1661-1670
    • /
    • 2016
  • In this paper, we present a risk prediction system and customized evacuation pathfinding algorithm in fire scenarios. For the risk prediction, we apply a multi-level clustering mechanism using collected temperature at sensor nodes throughout the network in order to predict the temperature at the time that users actually evacuate. Based on the predicted temperature and its reliability, we suggest an evacuation pathfinding algorithm that finds a suitable evacuation path from a user's current location to the safest exit. Simulation results based on FDS(Fire Dynamics Simulator) of NIST for a wireless sensor network consisting of 47 stationary nodes for 1436.41 seconds show that our proposed prediction system achieves a higher accuracy by a factor of 1.48. Particularly for nodes in the most reliable group, it improves the accuracy by a factor of up to 4.21. Also, the customized evacuation pathfinding based on our prediction algorithm performs closely with that of the ground-truth temperature in terms of the ratio of safe nodes on the selected path, while outperforming the shortest-path evacuation with a factor of up to 12% in terms of a safety measure.

A Study on Authentication Management and Communication Method using AKI Based Verification System in Smart Home Environment (스마트 홈 환경에서 AKI기반 검증 시스템을 활용한 인증관리 및 통신 기법에 관한 연구)

  • Jin, Byung Wook;Park, Jung Oh;Jun, Moon Seog
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제16권6호
    • /
    • pp.25-31
    • /
    • 2016
  • With the development of IOT technology and the expansion of ICT services recently, a variety of home network services have been advanced based on wired and wireless high speed telecommunication. Domestic and global companies have been studying on the innovative technology for the users using IOT based technology and the environment for the smart home services has been gradually developed. The users live their lives with more convenience due to the expansions and developments of smart phones. However, the threatening on the security of the smart home network had occurred by various attacks with the connection to the smart environment telecommunication, lack of applications on low powered and light weight telecommunication, and the problems of security guideline. In addition, the solutions are required for the new and variant attacking cases such as data forgery and alteration of the device for disguising approach with ill will. In this article, the safe communication protocol was designed using certification management technique based on AKI which supplemented the weakness of PKI, the existing certification system in the smart environment. Utilizing the signature technique based on ECDSA, the efficiency on the communication performance was improved, and the security and the safety were analyzed on the security threat under the smart home environment.

An analysis on invasion threat and a study on countermeasures for Smart Car (스마트카 정보보안 침해위협 분석 및 대응방안 연구)

  • Lee, Myong-Yeal;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제18권3호
    • /
    • pp.374-380
    • /
    • 2017
  • The Internet of Things (IoT) refers to intelligent technologies and services that connect all things to the internet so they can interactively communicate with people, other things, and other systems. The development of the IoT environment accompanies advances in network protocols applicable to more lightweight and intelligent sensors, and lightweight and diverse environments. The development of those elemental technologies is promoting the rapid progress in smart car environments that provide safety features and user convenience. These developments in smart car services will bring a positive effect, but can also lead to a catastrophe for a person's life if security issues with the services are not resolved. Although smart cars have various features with different types of communications functions to control the vehicles under the existing platforms, insecure features and functions may bring various security threats, such as bypassing authentication, malfunctions through illegitimate control of the vehicle via data forgery, and leaking of private information. In this paper, we look at types of smart car services in the IoT, deriving the security threats from smart car services based on various scenarios, suggesting countermeasures against them, and we finally propose a safe smart car application plan.