• 제목/요약/키워드: Sacrificial anode protection

검색결과 56건 처리시간 0.024초

해양환경중에서 A1-합금희생양극에 의한 음극방식특성 (A Study on the Characteristics of Cathodic Protection by Al-Alloy Sacrificial Anode in Marine Environment)

  • 이연호
    • 수산해양기술연구
    • /
    • 제28권1호
    • /
    • pp.53-60
    • /
    • 1992
  • In this study, cathodic protection experiment was carried out by Al-alloy sacrificial anode in marine environments which have specific resistance($\rho$) if 25~7000$\Omega$.cm and investigated protection potential, current density and loss rate of Al-alloy sacrificial anode. The main results resistance($\rho$) of 400$\Omega$.cm, the cathodic protection potential appears high about-720 mV(SCE). But below specific resistance($\rho$) of 300$\Omega$.cm, the cathodic protection potential appears low about-770 mV(SCE) and simultaneously, cathode is protected sufficiently. 2) The loss rate of Al-Alloy sacrificial anode became large with decreasing specific resistance and increasing the ratio(A sub(c)/A sub(a) of bared surface area of anode and cathode. 3) The loss rate of Al-alloy sacrificial anode(w) to the mean current density of anode(i) is as follows. w=ai+b (a, b : experimental constants)

  • PDF

Investigation of the Effective Range of Cathodic Protection for Concrete Pile Specimens Utilizing Zinc Mesh Anode

  • Duhyeong Lee;Jin-A Jeong
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.195-202
    • /
    • 2024
  • A zinc mesh sacrificial anode cathodic protection method is recently being developed to protect the reinforced concrete structure in a marine environment. However, comprehensive information regarding the cathodic protection technology applied to reinforced concrete test specimens utilizing zinc mesh sacrificial anodes remains limited. Particularly, no research has investigated the effective range of sacrificial anode cathodic protection in a reinforced concrete structure regarding the transmission of protection current from zinc mesh sacrificial anode to the reinforced concrete structure, particularly concerning effects of temperature variations. This study examined the distribution of potential and current using a long single rebar and several segment reinforcing bars inside a horizontal beam. Vertical pile specimens were applied with a zinc mesh sacrificial anode to simulate concrete bridges or harbor structures. To check the effect of cathodic protection, cathodic protection potential and current of the reinforced concrete specimens were measured and 100 mV depolarization criterion test was performed. It was confirmed that effect of cathodic protection varied depending on resistivity and temperature. The cathodic protection test of pile specimens revealed that the maximum reachable range of cathodic protection current was 10 cm from the waterline as observed in the experiment.

Critical Design Issues on the Cathodic Protection Systems of Ships

  • Lee, Ho Il;Lee, Chul Hwan;Jung, Mong Kyu;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.90-95
    • /
    • 2007
  • Cathodic protection technology has been widely used on ship's outer hull and inner side of ballast water tanks as a supplementary corrosion protection measure in combination with protective organic coatings. Impressed current cathodic protection system is typically opted for the ship's hull and, sacrificial anode system, for ballast water tanks. The anticipation and interest in cathodic protection system for ships has been surprisingly low-eyed to date in comparison with protective coatings. Computational analysis for the verification of cathodic protection design has been tried sometimes for offshore marine structures, however, in commercial shipbuilding section, decades old design practice is still applied, and no systematic or analytical verification work has been done for that. In this respect, over-rotection from un-erified initial design protocol has been also concerned by several experts. Especially, it was frequently reported in sacrificial anode system that even after full design life time, anode was remaining nearly intact. Another issue for impressed current system, for example, is that the anode shield area design for ship's outer hull should be compromised with actual application situation, because the state-of-the-art design equation is quite impractical from the applicator's stand. Besides that, in this study, some other critical design issues for sacrificial anode and impressed current cathodic protection system were discussed.

희생양극법을 이용한 레일부식 저감 방안에 관한 연구 (A Study on Mitigation of Rail Corrosion using Sacrificial Anode Cathodic Protection Method)

  • 최정열;김준형;이규용;김영기;박종윤;송봉환;설진웅
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.54-60
    • /
    • 2017
  • A railway rail will be corroded by the repetitive sea wind and fog in the splash and tidal zone such as Youngjong grand bridge. And these rusts of rail could be increased by increasing service period, and it frequently occurred the safety accidents or disorders in electrical problem. In this study, the sacrificial anode cathodic protection method was proposed as a measures for reducing the corrosion of the railway rails in the oceanic climate conditions. As the results of immersion test using the salt water during four months, the sacrificial anode cathodic protection method using the aluminum anode(Al-anode) was evaluated that a distinct effect on corrosion reduction in the rails. Therefore the sacrificial anode cathodic protection method was experimentally proven that a disorders in aspects electric and signal of railway operation condition such as direct fixation track system in Youngjong grand bridge could be prevented by reducing rust falling from the rail. In addition, the installation conditions of the anodes directly affect the transmission range of corrosion potential, the sectional loss of anode, and the corrosion reduction effect. Therefore, to expect the corrosion reduction effect of rails under the oceanic climate conditions for railway track, it was important to adopted the appropriate spacing of anode installation by considering the actual field conditions.

Cathodic Protection of Onshore Buried Pipelines Considering Economic Feasibility and Maintenance

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.158-168
    • /
    • 2016
  • During the installation of crude oil or gas pipelines, which pass through onshore buried pipelines or onshore pipeline from subsea pipeline to onshore plant, countermeasures need to be implemented so as to ensure a sufficient design life by protecting the steel pipes against corrosion. This can be achieved through impressed current cathodic protection method for onshore pipelines and through galvanic sacrificial anode corrosion protection method for offshore pipelines. In particular, in the case of impressed current cathodic protection, isolation joint flanges should be used. However, this makes maintenance control difficult with its installation having a negative impact on price. Therefore, in this study, the most suitable methodology for onshore pipeline protection between galvanic sacrificial anode corrosion protection and impressed current cathodic protection method will be introduced. In oil and gas transportation facilities, the media can be carried to the end users via onshore buried and/or offshore pipeline. It is imperative for the field operators, pipeline engineers, and designers to be corrosion conscious as the pipelines would undergo material degradations due to corrosion. The mitigation can be achieved with the introduction of an impressed current cathodic protection method for onshore buried pipelines and a galvanic sacrificial anode corrosion protection method for offshore pipelines. In the case of impressed current cathodic protection, isolation joint flanges should be used to discontinuity. However, this makes maintenance control to be difficult when its installation has a negative impact on the price. In this study, the most suitable corrosion protection technique between galvanic sacrificial anode corrosion protection and impressed current cathodic protection is introduced for (economic life of) onshore buried pipeline.

희생양극의 수명에 미치는 인접 강파일의 음극방식 영향 (Effect of Cathodic Protection of Adjacent Steel Piles on the Life of Sacrificial Anode)

  • 문경만;이규환;조황래;이명훈;김윤해;김진경
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.76-81
    • /
    • 2008
  • There are two cases when the life of a sacrificial anode is shortened from the designed life: one case results from self-corrosion of the anode due to contamination by sea water in the other case, however, electrical current to protect some given steel piles overflows to protect other, adjacent non-protected steel piles. In this study, the variation of polarization potential of nine steel piles, being protected cathodically and with anode-producing current between anode and steel piles, was investigated. Parameters were varied, such as the eighth and ninth steel piles either connected electrically or not, and whether the ninth steel pile was protected by another sacrificial anode or not. The current produced by the sacrificial anode decreased when the ninth steel pile was cathodically protected by the anode of another pile. However, produced current increased when the ninth steel pile was not connected to another anode. The study concludes that the life of a sacrificial anode can be prolonged or shortened depending on whether adjacent steel piles are cathodically protected or not.

희생양극방식을 응용한 콘크리트 중의 철근의 전기방식 효과 (Effect of the Chathodic Protection in Concrete by Applying Sacrificial Anode System)

  • 김성수;김홍삼;김진철;김종필;박광필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.87-92
    • /
    • 2001
  • Reinforced concrete have defect in durability due to carbonation, freezing and thawing, and penetration of chloride ions with time in spite of superb structure. Especially steel corrosion in concrete due to penetration of chloride ions have result in a marked decline in service life. The principal purpose in this study is to see effect of sacrificial anode cathodic system, one of the electrochemical methods in order to the control of steel corrosion in concrete. There are chloride content in concrete in cracked and no cracked specimen with cathodic protection. To recognize the effect of sacrificial anode cathodic protection, Instant-off potential are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

희생양극재의 매입에 의한 콘크리트 중의 전기방식 효과 (Effects of the Protection for Rebars by Embeded Sacrificial Anode in Concrete)

  • 김성수;김홍삼;김종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1207-1212
    • /
    • 2001
  • Reinforced concrete has defects in durability due to carbonation, freezing and thawing, and penetration of chloride ions with elapse of time in spite of super structure. Especially steel corrosion in concrete due to penetration of chloride ions has result in a severe decline in service life. The principal purpose of this study is to estimate effects of sacrificial anode cathodic system, one of the electrochemical methods in order to control of steel corrosion in concrete. There are chloride content in concrete in cracked and non cracked specimen with cathodic protection. To investigate the effect of sacrificial anode cathodic protection, potential-decay with current density, corrosion ratio, etc. are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

희생양극법을 이용한 콘크리트중의 철근부식 억제 효과에 대한 연구 (A Study on the Rebar Corrosion Control in Concrete by Using the Sacrificial Anode Cathodic Protection)

  • 문한영;김성수;김홍삼;김성섬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.299-302
    • /
    • 1997
  • Generally the corrosion expansion of the steel due to outdoor corrosive environmental factor brings about serious problem on the durability of concrete structures. It is the purpose of this study to see whether adapted sacrificial anode method is effective or not. from the experimental results. the potential of steel in concrete in case of adapting the sacrificial anode method satisfies protection standard value (less than -850mV vs CSE).

  • PDF

The effect of cathodic protection system by means of zinc sacrificial anode on pier in Korea

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1206-1211
    • /
    • 2014
  • This study has been conducted to confirm the effect of sacrificial anode cathodic protection system for 90 days to protect corrosion on pier that is located in Korea. The cathodically protected structure was a slab and a pile cap. Before the construction of cathodic protection system, the macrography was carried out. As a result of the macrography, many corrosion traces were confirmed in this structure. The trace was mainly focused on joint and zones that concrete cover was eliminated. To apply the cathodic protection system, many onsite techniques have been adopted. In addition, to confirm the inner state of steel in concrete properly, a corrosion monitoring sensor (DMS-100, Conclinic Co. Ltd) has been applied. Test factors were corrosion & cathodic protection potential, 4 hour depolarization potential, resistivity and current density. After 90 days from the installation of cathodic protection system, it could confirm that proper corrosion protection effect was obtained by considering the result of tests.