• Title/Summary/Keyword: SWAT2000 model

Search Result 53, Processing Time 0.018 seconds

The Impacts on Flow by Hydrological Model with NEXRAD Data: A Case Study on a small Watershed in Texas, USA (레이더 강수량 데이터가 수문모델링에서 수량에 미치는 영향 -미국 텍사스의 한 유역을 사례로-)

  • Lee, Tae-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.2
    • /
    • pp.168-180
    • /
    • 2011
  • The accuracy of rainfall data for a hydrological modeling study is important. NEXRAD (Next Generation Radar) rainfall data estimated by WRS-88D (Weather Surveillance Radar - 1988 Doppler) radar system has advantages of its finer spatial and temporal resolution. In this study, NEXRAD rainfall data was tested and compared with conventional weather station data using the previously calibrated SWAT (Soil and Water Assessment Tool) model to identify local storms and to analyze the impacts on hydrology. The previous study used NEXRAD data from the year of 2000 and the NEXRAD data was substituted with weather station data in the model simulation in this study. In a selected watershed and a selected year (2006), rainfall data between two datasets showed discrepancies mainly due to the distance between weather station and study area. The largest difference between two datasets was 94.5 mm (NEXRAD was larger) and 71.6 mm (weather station was larger) respectively. The differences indicate that either recorded rainfalls were occurred mostly out of the study area or local storms only in the study area. The flow output from the study area was also compared with observed data, and modeled flow agreed much better when the simulation used NEXRAD data.

Evaluation of Water Quality Impacts of Forest Fragmentation at Doam-Dam Watershed using GIS-based Modeling System (GIS 기반의 모형을 이용한 도암댐 유역의 산림 파편화에 따른 수(水)환경 영향 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoungjae;Choi, Joongdae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2006
  • The water quality impacts of forest fragmentation at the Doam-dam watershed were evaluated in this study. For this ends, the watershed scale model, Soil and Water Assessment Tool (SWAT) model was utilized. To exclude the effects of different magnitude and patterns in weather, the same weather data of 1985 was used because of significant differences in precipitation in year 1985 and 2000. The water quality impacts of forest fragmentation were analyzed temporarily and spatially because of its nature. The flow rates for Winter and Spring has increased with forest fragmentations by $8,366m^3/month$ and $72,763m^3/month$ in the S1 subwatershed, experiencing the most forest fragmentation within the Doam-dam watershed. For Summer and Fall, the flow rate has increased by $149,901m^3/month$ and $107,109m^3/month$, respectively. It is believed that increased flow rates contributed significant amounts of soil erosion and diffused nonpoint source pollutants into the receiving water bodies. With the forest fragmentation in the S1 watershed, the average sediment concentration values for Winter and Spring increased by 5.448mg/L and 13.354mg/L, respectively. It is believed that the agricultural area, which were forest before the forest fragmentation, are responsible for increased soil erosion and sediment yield during the spring thaw and snow melts. For Spring and Fall, the sediment concentration values increased by 20.680mg/L and 24.680mg/L, respectively. Compared with Winter and Spring, the increased precipitation during Summer and Fall contributed more soil erosion and increased sediment concentration value in the stream. Based on the results obtained from the analysis performed in this study, the stream flow and sediment concentration values has increased with forest fragmentation within the S1 subwatershed. These increased flow and soil erosion could contribute the eutrophication in the receiving water bodies. This results show that natural functionalities of the forest, such as flood control, soil erosion protection, and water quality improvement, can be easily lost with on-going forest fragmentation within the watershed. Thus, the minimize the negative impacts of forest fragmentation, comprehensive land use planning at watershed scale needs to be developed and implemented based on the results obtained in this research.

  • PDF

Landscape Analysis of the Forest Fragmentations at Doam-Dam Watershed using the FRAGSTATS Model (FRAGSTATS 모형을 이용한 도암댐 유역의 산림 파편화 분석)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoung-Jae;Choi, Joong-Dae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2007
  • The Doam-dam watershed, located at Kangwon Province, Korea, has been experiencing significant changes in land uses, conversion from forest to agricultural/urban areas, with human involvements. However, no thorough investigation of the landscape impacts of land use changes was performed at this watershed using the scientific analytical tool. Thus, the FRAGSTATS model was utilized to quantitatively analyze the landscape impacts of forest fragmentation in this study. To provide the detailed explanations for 11 landscape indices considered in this study, two artificial and simplified landscapes, before and after fragmentations, were constructed. Using these 11 indices, the landscape impacts of forest fragmentation in 19 subwatersheds of the Doam-dam watershed were analyzed. The S1 subwatershed, one of 19 subwatersheds of the Doam-dam watershed, was found to have experienced the significant forest fragmentation from 1985 to 2000 based on landscape analysis using the FRAGSTATS model. The results obtained in this study can be used to evaluate the water quality impacts of forest fragmentations/land use changes at watershed scale level, and establish environment-friendly land use planning based on the results obtained using landscape analytical tool, FRAGSTATS.

  • PDF