• Title/Summary/Keyword: SWASH

Search Result 167, Processing Time 0.023 seconds

A Kinematic Analysis on the Connecting Rod Mechanism in Swash-plate-type Hydraulic Axial Piston Motor (사판식 유압 피스톤 모터 커넥팅 로드 기구의 운동해석)

  • 하정훈;김경호;함영복;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.621-625
    • /
    • 1997
  • Recently, wash plate type hydraulic axial piston motors are being in extensively used in the world, because of simple design, lightweight, effective cost. But the structural problem of swash plate type hydraulic axial piston motor is the limited angle of swash plate and lateral force having a undesirable effect in piston. To solve these problems. a connecting rod mechanism. which is commonly used in hent axis type motors, is considered to be applied the swash plate cype motor. In this paper, kinematic analysis is done on the connecting rod mechanism. A series of formula are derived and numerical calculations are done for a set of motor parameters.

  • PDF

A Study on the Analysis of Structural Behaviors the Swash-Type Piston Pump (사판식 피스톤 펌프의 구조적 거동 해석에 관한 연구)

  • Kim, Jeong-Hwa;Shin, Mi-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.125-132
    • /
    • 2016
  • The swash-type piston pump is a device that discharges as much volume of hydraulic oil generated as it moves the ramp by controlling the angle of the swash. This pump is suitable for high-speed high pressurization, and due to its useful characteristic being the variable capacity-type, it is used as a main pump for heavy equipment in various fields such as defense, shipbuilding, construction, etc. This study intends to obtain optimal design values by conducting a structural analysis in order to verify its reliability during the design process of the newly developed swash-type piston pump.

Dynamic Behavior Analysis of Rotor-Bearing System Under External Forces in Swash Plate Compressor (외부 가진력을 고려한 사판식 압축기 회전축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2001
  • The dynamic behavior of rotor-bearing system used in swash plate compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for swash plate, disk pulley and bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at swash plate and driving pulley. And, the steady state displacements of the rotor are compared with a variation in unbalance mass. Results show that the loci of rotating shaft considering unbalance forces and external compression forces are more severe in flutter motion than with only unbalance forces.

Performance Analysis of the Swash Plate Type Compressor using CO2 Refrigerant (CO2용 사판식 압축기 성능 해석)

  • Lee, Geon-Ho;Park, Ik-Seo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.564-569
    • /
    • 2005
  • Recently, from the viewpoint of global wanning, natural gas CO2 is considered as a main refrigerant for hot water system. The characteristics of CO2 is not toxic, not flammable, high pressure, and high refrigerating capacity. Also it is widely available as a byproduct of industrial processes. This paper describes the performance analysis program of the swash plate type compressor using CO2 refrigerant. Estimates of the refrigerant flow rate, compression work, discharge temperature and volumetric, compressor efficiencies of the CO2 swash plate type compressor are obtained from the various design parameter such as the inclination angle of the swash plate, discharge hole area and suction hole area.

  • PDF

A Kinematic Analysis on Piston Rod Mechanism in Swashplate Type Hydraulic Axial Piston Motor/Pump Using Constant Velocity Joint (등속조인트를 적용한 사판식 유압 모터/점프의 로드형 피스톤에 대한 운동해석)

  • Kim K.H.;Kim S.D.;Ham Y.B.;Lee J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, swash plate type hydraulic axial piston motors/pumps are being extensively used in the world, because of simple design, light weight and effective cost. Structural problem of the swash plate type motor/pump is that tilting angle of swash plate should be limited to relatively small value and lateral farce on pistons has an undesirable effect in reciprocating motion. To solve these problems, piston rod mechanism, which is commonly used in bent axis type motor/pump, is considered to be applied to the swash plate type motor/pump. In this paper, kinematic analysis was done on the piston rod mechanism. A series of formula were derived and numerical calculations were done for a set of motor parameters.

  • PDF

An Experimental Study on the Performance of Swash Plate Compressor with variations of Oil Charging Conditions (오일 충전량 변화에 따른 사판식 압축기 성능의 실험적 고찰)

  • Kim, Min-Jun;Park, Ik-Seo;Lee, Geon-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.704-709
    • /
    • 2003
  • The automobile air conditioning system generally consists of laminated type evaporator, swash plate type compressor, condenser, expansion valve and receiver drier. A swash plate type compressor has been used widely in automobile air conditioning system since 1955, because of wider operation range and better durability than other type compressors. In this study, the performance of an swash plate type compressor with variations of oil charging conditions has been investigated experimentally using the hot gas system. Further, the effects of varying compressor speed on the performance of the compressor has been discussed.

  • PDF

Modeling and Robust Controller Design of a Swash Plate for Swash Plate Type Variable Displacement Axial Piston Pump (가변용량형 사판식 액셜피스톤 펌프의 모델링 및 사판 강인 제어기 설계)

  • Park, Sung-Hwan;Park, Yong-Ho;Lee, Ji-Min;Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.75-81
    • /
    • 2008
  • A robust controller is proposed for regulating effectively the pressure of control cylinder of swash plate type variable displacement axial piston pump. In order to design a precise and robust pressure control system, a mathematical model for swash plate control system is identified by the signal compression method. Based on the identified mathematical model, an $H_{\infty}$ robust swash plate controller is designed which is robust to the variation of the load pressure. The precise and robust swash plate control characteristics are verified by experiments.

Design Parameter Characteristics to Improve Performance of a Swash-Plate-Type Piston Motor (사판식 피스톤 모터의 성능향상을 위한 설계변수 특성 연구)

  • Jeong, Yoo Seong;Chung, Won Jee;Sa, Jin Woong;Jeong, Young Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2017
  • Hydraulic equipment have been traditionally used for constructing machines with high power density and durability. In particular, pumps and motors are considered essential equipment, and are consistently investigated to find suitable methods for optimal utilization of their characteristics. A kinematic analysis of a swash-plate-type piston motor model using the hydraulic analysis program SimulationX$^{(R)}$ to model a nine-piston motor and simulate a swash-plate angle with a low-pulsation and high-efficiency performance of the motor has been provided in this paper. Finally, along with the theoretical consideration of the stroke, the effect of changing strokes and notch shape (V, U, non-type) on the pulsation is simulated to analyze and determine the effects of reduction in pulsation. The optimal swash-plate angle and stroke thus obtained will reduce the trial and error in future design.

Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment (다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법)

  • Jang, Jin Hyun;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

Improvement of Wave Generation for SWASH Model Using Relaxation Method (이완법을 이용한 SWASH 모형의 파랑 조파기법 개선)

  • Shin, Choong Hun;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.169-179
    • /
    • 2017
  • In this study, we applied the wave generation method by relaxation method to the SWASH model, which is a non - hydrostatic numerical model, for stable and accurate wave generation of linear and nonlinear waves. To validate the relaxation wave generation method, we were simulated various wave, including the linear wave and nonliner wave and compared with analytical solution. As a result, the incident wave was successfully generated and propagated in all cases from Stokes waves to cnoidal wave. Also, we were confirmed that the wave height and the waveform were in good agreement with the analytical solution.