• Title/Summary/Keyword: SVPWM(Space Vector Pulse Width Modulation)

검색결과 85건 처리시간 0.021초

A Neutral-Point Voltage Balance Controller for the Equivalent SVPWM Strategy of NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2109-2118
    • /
    • 2016
  • Based on the space vector pulse width modulation (SVPWM) theory, this paper realizes an easier SVPWM strategy, which is equivalently implemented by CBSPWM with zero-sequence voltage injection. The traditional SVPWM strategy has no effect on controlling the neutral-point voltage balance. In order to solve the neutral-point voltage unbalance problem for neutral-point-clamped (NPC) three-level inverters, this paper proposes a neutral-point voltage balance controller. The proposed controller realizes controlling the neutral-point voltage balance by dynamically calculating the offset superimposed to the three-phase modulation waves of an equivalent SVPWM strategy. Compared with the traditional SVPWM strategy, the proposed neutral-point voltage balance controller has a strong ability to balance the neutral-point voltage, has good steady-state performance, improves the output waveforms quality and is easy for digital implementation. An experiment has been carried out on a NPC three-level inverter prototype based on a digital signal processor-complex programmable logic device (DSP-CPLD). The obtained experimental results verify the effectiveness of the proposed neutral-point voltage balance controller.

A Carrier-Based Pulse Width Modulation Method for Indirect Matrix Converters

  • Nguyen, Dinh-Tuyen;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.448-457
    • /
    • 2012
  • This paper proposes a carrier-based pulse width modulation (PWM) method to control an indirect matrix converter (IMC) by analyzing the relationship between the space vector PWM (SVPWM) and the carrier-based PWM. The complexity of the SVPWM method for an IMC can be reduced by using an equivalent carrier-based PWM method. The advantage of the proposed algorithm is its ability use only one symmetrical triangular carrier signal to generate the gate signals for all of the power switches in both the rectifier and inverter stages as compared to the conventional method where the carrier signal used in the rectifier stage is different from that of the inverter stage. In addition, by using a suitable offset voltage component in the modulation signals, the output voltage magnitude reaches 0.866 of the input voltage magnitude. Simulation and experimental results are provided in order to validate the proposed method.

Fast FCS-MPC-Based SVPWM Method to Reduce Switching States of Multilevel Cascaded H-Bridge STATCOMs

  • Wang, Xiuqin;Zhao, Jiwen;Wang, Qunjing;Li, Guoli;Zhang, Maosong
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.244-253
    • /
    • 2019
  • Finite control set model-predictive control (FCS-MPC) has received increasing attentions due to its outstanding dynamic performance. It is being widely used in power converters and multilevel inverters. However, FCS-MPC requires a lot of calculations, especially for multilevel-cascaded H-bridge (CHB) static synchronous compensators (STATCOMs), since it has to take account of all the feasible voltage vectors of inverters. Hence, an improved five-segment space vector pulse width modulation (SVPWM) method based on the non-orthogonal static reference frames is proposed. The proposed SVPWM method has a lower number of switching states and requires fewer computations than the conventional method. As a result, it makes FCS-MPC more efficient for multilevel cascaded H-bridge STATCOMs. The partial cost function is adopted to sequentially solve for the reference current and capacitor voltage. The proposed FCS-MPC method can reduce the calculation burden of the FCS-MPC strategy, and reduce both the switching frequency and power losses. Simulation and experimental results validate the excellent performance of the proposed method when compared with the conventional approach.

Development, Implementation and Experimentation on a dSPACE DS1104 of a Direct Voltage Control Scheme

  • Hmidet, Ali;Dhifaoui, Rachid;Hasnaoui, Othman
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.468-476
    • /
    • 2010
  • This paper proposes and develops a new direct voltage control (DVC) approach. This method is designed to be applied in various applications for AC drives fed with a three-phase voltage source inverter (VSI) working with a constant switching time interval as in the standard direct torque control (DTC) scheme. Based on a very strong min(max) criterion dedicated to selecting the inverter voltage vector, the developed DVC scheme allows the generation of accurate voltage forms of waves. The DVC algorithm is implemented on a dSPACE DS1104 controller board and then compared with the space vector pulse width modulation technique (SVPWM) in an open loop AC drive circuit. To demonstrate the efficiency of the developed algorithm in real time and in closed loop AC drive applications, a scalar control scheme for induction motors is successfully implemented and experimentally studied. Practical results prove the excellent performance of the proposed control approach.

An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

  • Ramirez, Fernando Arturo;Arjona, Marco A.
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1235-1243
    • /
    • 2015
  • This paper presents a modified Space Vector Pulse Width Modulation Technique (SVPWM), which solves the well-known problem of voltage imbalance in the capacitors of a single-phase multilevel inverter. The proposed solution is based on the measurement of DC voltage levels at each capacitor of the inverter DC bus. The measurements are then used to adjust the size of the active vectors within the SVPWM algorithm to keep the voltage waveform sinusoidal regardless of any voltage imbalance on the DC link capacitors. When a voltage deviation exceeds a predetermined hysteresis band, the correspondent voltage vector is restricted to restore the voltage level to an acceptable threshold. Hence, the need for external voltage regulators for the voltage capacitors is eliminated. The functionality of the proposed algorithm is successfully demonstrated through simulations and experiments on a grid tied application.

폴전압을 이용한 SVPWM 인버터의 과변조 기법 (An Overmodulation Strategy for SVPWM Inverter Using Pole Voltage)

  • 韓 大 雄;金 相 勳
    • 전력전자학회논문지
    • /
    • 제7권2호
    • /
    • pp.149-157
    • /
    • 2002
  • 본 논문에서는 공간벡터 PWM(SVPWM) 인버터에서 직류단 전압을 최대로 이용하기 위한 새로운 과변조 기법을 제안한다. 제안된 기법은 영-시퀀스 신호인 옵셋 전압 주입 원리에 근거한 SVPWM의 개념을 사용하였다. 제안된 과변조 기법에서는 폴전압을 간단히 수정함으로써 과변조 영역 전반에 걸터 인버터의 출력전압을 선형적으로 제어할 수 있게 하였다. 제안된 기법은 시뮬레이션과 실험을 통하여 그 타당성을 확인하였다.

3상 계통 연계 인버터의 SVPWM을 위한 LCL-필터 설계 (Design of an LCL-Filter for Space Vector PWM in a Grid-Connected System)

  • 서승규;조용수;이교범
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.538-541
    • /
    • 2016
  • This paper proposes an LCL-filter design for space vector pulse width modulation (SVM) in grid-connected three-phase inverter systems. Although there are a several studies in progress, the existing methods are erroneous because they do not focus on the other switching methods. This paper presents the design methodology for an LCL-filter that is optimized for SVM switching operations. The design procedure for the LCL-filter is presented step-by-step. The inverter-side inductor was determined by an analysis of the ripple components, mathematically. Based on the reactive power absorption ratio, the filter capacitor was determined. The grid-side inductor was determined by the ripple attenuation factor of the output current. Experimental results verify the validity of the design method for the LCL-filter.

단상 PWM 컨버터에 적용한 공간 벡터 PWM (Adaptation of Space Vector Modulation to Single-Phase High Power PWM Converters)

  • 이희면;이동명
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.442-443
    • /
    • 2011
  • In this paper, a voltage control method based on DQ transformation and Space Vector Pulse Width Modulation (SVPWM) for a single phase three-level converter is proposed. This control method is designed to use DC values instead of using instantaneous values of current which are usually used in single-phase application, so that it results in a fast and robust voltage control response. Simulation results demonstrate the validity of the control strategies.

  • PDF

SVPWM 방식의 3상 인버터에 대한 간단한 데드타임 보상 알고리즘 (Dead Time Compensation Algorithm for the 3-Phase Inverter using SVPWM)

  • 김홍민;추영배;이동희
    • 전력전자학회논문지
    • /
    • 제16권6호
    • /
    • pp.610-617
    • /
    • 2011
  • 본 논문은 공간벡터펄스 변조법(SVPWM, Space Vector Pulse Width Modulation)을 사용하는 3상 인버터의 새로운 데드타임 직접 보상 방법을 제안한다. 제안된 데드타임 보상방식은 인버터에 인가되는 데드타임을 중간상 전류의 방향에 따라, 유효전압이 인가되는 유효전압벡터 인가시간에서 직접 보상하는 방식이다. 3상 인버터에서 각상에 인가되는 전압의 크기는 유효전압이 인가되는 시간에 의해 결정되고, 데드타임의 영향에 따라, 실제로 유효전압이 인가되는 스위칭 시간은 전류의 방향에 따라 손실이 발생하게 된다. 제안된 방식에서는 실제로 전류의 방향에 따라 손실이 발생하는 유효전압벡터의 인가시간에 직접적으로 손실 시간을 더하여 유효전압벡터의 인가시간을 계산하는 방식으로 별도의 전압오차를 보상하기 위한 제어기와 복잡한 d-q 변환을 필요로 하지 않는 장점이 있다. 제안된 방식은 3상 R-L 부하에 대하여 컴퓨터 모의해석과 실험을 통하여 제안된 방식의 데드타임 보상을 검증하였다.

변조지수에 따른 공통모드 전압 저감 기법 성능 비교 (Performance Comparison of Common-Mode Voltage Reduction Methods in terms of Modulation Index)

  • 허건;박용순
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.106-108
    • /
    • 2020
  • This paper introduces a new pulse-width modulation (PWM) method to reduce common-mode voltages (CMVs) and compare its performance with other reduced CMV-PWM (RCMV-PWM) methods. To avoid the use of zero-vectors which cause high CMV peaks, the introduced method splits every reference vector into two vectors such that the peak-to-peak magnitude of CMV is reduced by one-third of conventional space-vector PWM (SVPWM). The performance of RCMV-PWMs altered by the modulation index are analyzed with simulation results.

  • PDF