• Title/Summary/Keyword: SVM kernel

검색결과 196건 처리시간 0.026초

분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류 (Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel)

  • 최재완;변영기;김용일;유기윤
    • 대한공간정보학회지
    • /
    • 제14권4호통권38호
    • /
    • pp.71-77
    • /
    • 2006
  • 통계학습이론에 기반하고 있는 Support Vector Machine(SVM)은 구조적 위험 최소화원리를 바탕으로 하는 학습 알고리즘이다. 일반적으로SVM은 비선형 경계를 결정하고 자료를 분류하기 위해서 커널(kernel)을 사용한다. 그러나 기존의 커널들은 두 벡터간의 내적이나 거리차를 이용하여 유사도를 측정하기 때문에 하이퍼스펙트럴 영상분류에 효과적으로 적용될 수 없다. 본 논문에서는 이를 해결하기 위해서 분광유사도커널(Spectral similarity kernel)을 제안한다. 분광유사도 커널은 두 벡터의 거리차와 각 차이를 모두 계산하는 지역적 커널로 하이퍼스펙트럴 영상의 분광특성을 효과적으로 고려할 수 있다. 이를 검증하기 위해서 Hyperion 영상에 polynomial kernel, RBF kernel을 사용한 SVM 분류기와 분광유사도 커널을 사용한 SVM 분류기를 적용하여 토지피복분류를 시행하였다. 분류결과를 통해서 분광유사도 커널을 사용한 SVM 분류기가 정량적, 공간적으로 가장 우수한 결과를 보임을 확인하였다.

  • PDF

Mahalanobis 거리측정 방법 기반의 GMM-Supervector SVM 커널을 이용한 화자인증 방법 (Speaker Verification Using SVM Kernel with GMM-Supervector Based on the Mahalanobis Distance)

  • 김형국;신동
    • 한국음향학회지
    • /
    • 제29권3호
    • /
    • pp.216-221
    • /
    • 2010
  • 본 논문에서는 Gaussian Mixture Model (GMM)-supervector의 Mahalanobis 거리측정 방법 기반의 Support Vector Machine (SVM) 커널을 이용한 새로운 화자인증 방법을 제안한다. 제안된 GMM-supervector SVM 커널방식은 GMM 방식과 SVM 방식을 결합한 방식으로서, GMM 파라미터에 의해 형성된 화자 및 비 화자 GMM-supervectors의 화자인증 임계값을 Mahalanobis 거리측정 방법기반의 SVM 커널에 적용함으로써 화자인증 정확도를 높인다. 제안한 방식의 성능 측정을 위해 20명의 화자를 대상으로 문장독립형 화자인증 실험을 수행하여 기존에 사용되고 있는 GMM, SVM, Kullback-Leibler (KL) divergence 거리측정 방법 기반의 GMM-supervector SVM 커널, Bhattacharyya 거리측정 방법기반의 GMM-supervector SVM 커널 방식을 통한 화자인증 결과들과 비교하였다.

Support Vector Machine에 대한 커널 함수의 성능 분석 (Performance Analysis of Kernel Function for Support Vector Machine)

  • 심우성;성세영;정차근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.405-407
    • /
    • 2009
  • SVM(Support Vector Machine) is a classification method which is recently watched in mechanical learning system. Vapnik, Osuna, Platt etc. had suggested methodology in order to solve needed QP(Quadratic Programming) to realize SVM so that have extended application field. SVM find hyperplane which classify into 2 class by converting from input space converter vector to characteristic space vector using Kernel Function. This is very systematic and theoretical more than neural network which is experiential study method. Although SVM has superior generalization characteristic, it depends on Kernel Function. There are three category in the Kernel Function as Polynomial Kernel, RBF(Radial Basis Function) Kernel, Sigmoid Kernel. This paper has analyzed performance of SVM against kernel using virtual data.

  • PDF

Support Vector Machines을 이용한 공급사슬관리의 지속적 협업 수준에 대한 의사결정모델 (A Decision Support Model for Sustainable Collaboration Level on Supply Chain Management using Support Vector Machines)

  • 임세헌
    • 한국유통학회지:유통연구
    • /
    • 제10권3호
    • /
    • pp.1-14
    • /
    • 2005
  • 성공적인 공급사슬관리에 있어 성과에 따른 지속적 협업 통제는 매우 중요하다. 본 연구에서는 기계학습 알고리즘인 SVM(Support Vector Machiness)을 이용해 균형성과표에 기반한 공급사슬관리 성과에 따른 지속적 협업 통제 모델을 개발하였다. 우리는 지속적 협업 통제모델 개발에 있어 108명의 전문가를 상대로 실증조사를 수행하였다. 본 연구 수행에 있어 4가지 형태의 SVM 커늘 (1) linear, (2) polynomail, (3) Radial Basis Function(RBF), (4) sigmoid kernel을 이용해 공급사슬관리 지속적 협업 예측 정확도를 비교하였다. SVM 커늘 4가지 중 linear kernel의 예측성과가 가장 좋았다. 그리고 본 연구에서는 SVM linear kernel의 예측성과를 ANN(Artificial Neural Network)의 예측성과와 비교하였다. 분석결과 SVM linear kernel이 공급사슬관리에 있어 지속적 협업 예측에 우수한 예측성과를 보여주는 것을 발견하였다. 이러한 곁과는 SVM linear kernel이 공급사슬관리의 지속적 협업 예측 통제에 있어 우수한 대안을 제공해 줄 것이다. 그러므로 공급사슬관리를 추구하는 기업들은 분 모델을 통해 지속적 협업 통제에 유용한 정보를 얻을 수 있을것이다.

  • PDF

A Novel Kernel SVM Algorithm with Game Theory for Network Intrusion Detection

  • Liu, Yufei;Pi, Dechang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.4043-4060
    • /
    • 2017
  • Network Intrusion Detection (NID), an important topic in the field of information security, can be viewed as a pattern recognition problem. The existing pattern recognition methods can achieve a good performance when the number of training samples is large enough. However, modern network attacks are diverse and constantly updated, and the training samples have much smaller size. Furthermore, to improve the learning ability of SVM, the research of kernel functions mainly focus on the selection, construction and improvement of kernel functions. Nonetheless, in practice, there are no theories to solve the problem of the construction of kernel functions perfectly. In this paper, we effectively integrate the advantages of the radial basis function kernel and the polynomial kernel on the notion of the game theory and propose a novel kernel SVM algorithm with game theory for NID, called GTNID-SVM. The basic idea is to exploit the game theory in NID to get a SVM classifier with better learning ability and generalization performance. To the best of our knowledge, GTNID-SVM is the first algorithm that studies ensemble kernel function with game theory in NID. We conduct empirical studies on the DARPA dataset, and the results demonstrate that the proposed approach is feasible and more effective.

KOMPSAT-2 영상의 토지피복분류에 적합한 SVM 커널 함수 비교 연구 (A Comparative Study on Suitable SVM Kernel Function of Land Cover Classification Using KOMPSAT-2 Imagery)

  • 강남이;고신영;조기성
    • 대한공간정보학회지
    • /
    • 제21권2호
    • /
    • pp.19-25
    • /
    • 2013
  • 최근 고해상도 위성영상은 자연자원이나 환경 관리에 필요로 하는 토지 피복 및 이용 현황자료 분석 등에 유용하게 사용되고 있다. 영상처리 알고리즘 중 SVM 알고리즘은 최근 다양한 분야에서 이용되고 있다. 그러나 SVM 알고리즘은 다양한 커널 함수 및 매개변수에 의해 그 정확도가 달라진다. 따라서 본 논문에서는 SVM 알고리즘의 대표적 커널 함수를 KOMPSAT-2의 영상자료에 적용하고 토지피복결과를 검사점을 이용하여 정확도 분석을 실시하였다. 또한 대상지의 토지피복분류에 적합한 SVM의 커널 함수 선정하기 위해 분석을 실시하였다. 그 결과 전체 분류 정확도에는 Polynomial 커널 함수가 가장 높은 정확도를 보였으며 분류 항목별 정확도에서의 가장 적절한 커널 함수는 Polynomial, RBF 커널 함수임을 알 수 있었다.

특징 강화 기법과 학습 데이터 길이 조절에 의한 Supervector Linear Kernel SVM 화자식별 개선 (Improvement in Supervector Linear Kernel SVM for Speaker Identification Using Feature Enhancement and Training Length Adjustment)

  • 소병민;김경화;김민석;양일호;김명재;유하진
    • 한국음향학회지
    • /
    • 제30권6호
    • /
    • pp.330-336
    • /
    • 2011
  • 본 논문에서는 supervector linear kernel SVM을 사용한 화자식별 시스템의 성능을 개선하는 방법을 제안하였다. 제안한 방법은 긴 학습 데이터를 여러 개의 짧은 학습 데이터로 분할하는 것을 기본 아이디어로 하고 있다. 제안한 방법의 성능을 평가하기 위해 서로 다른 4가지 데이터베이스에 PCA, GKPCA, KMDA를 사용하여 특징 강화를 하고 실험한 뒤 결과를 분석하였다. 실험 결과 제안한 방법이 supervector linear kernel SVM을 사용한 화자 식별 성능을 향상 시키는 것을 확인하였다.

온라인 서명 검증을 위한 SVM의 커널 함수와 결정 계수 선택 (Selection of Kernels and its Parameters in Applying SVM to ASV)

  • 판윈허;우영운;김성훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.1045-1046
    • /
    • 2015
  • When using the Support Vector Machine in the online signature verification, SVM kernel function should be chosen to use non-linear SVM and the constant parameters in the kernel functions should be adjusted to appropriate values to reduce the error rate of signature verification. Non-linear SVM which is built on a strong mathematical basis shows better performance of classification with the higher discrimination power. However, choosing the kernel function and adjusting constant parameter values depend on the heuristics of the problem domain. In the signature verification, this paper deals with the problems of selecting the correct kernel function and constant parameters' values, and shows the kernel function and coefficient parameter's values with the minimum error rate. As a result of this research, we expect the average error rate to be less than 1%.

  • PDF

A note on SVM estimators in RKHS for the deconvolution problem

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • 제23권1호
    • /
    • pp.71-83
    • /
    • 2016
  • In this paper we discuss a deconvolution density estimator obtained using the support vector machines (SVM) and Tikhonov's regularization method solving ill-posed problems in reproducing kernel Hilbert space (RKHS). A remarkable property of SVM is that the SVM leads to sparse solutions, but the support vector deconvolution density estimator does not preserve sparsity as well as we expected. Thus, in section 3, we propose another support vector deconvolution estimator (method II) which leads to a very sparse solution. The performance of the deconvolution density estimators based on the support vector method is compared with the classical kernel deconvolution density estimator for important cases of Gaussian and Laplacian measurement error by means of a simulation study. In the case of Gaussian error, the proposed support vector deconvolution estimator shows the same performance as the classical kernel deconvolution density estimator.

Survey on Nucleotide Encoding Techniques and SVM Kernel Design for Human Splice Site Prediction

  • Bari, A.T.M. Golam;Reaz, Mst. Rokeya;Choi, Ho-Jin;Jeong, Byeong-Soo
    • Interdisciplinary Bio Central
    • /
    • 제4권4호
    • /
    • pp.14.1-14.6
    • /
    • 2012
  • Splice site prediction in DNA sequence is a basic search problem for finding exon/intron and intron/exon boundaries. Removing introns and then joining the exons together forms the mRNA sequence. These sequences are the input of the translation process. It is a necessary step in the central dogma of molecular biology. The main task of splice site prediction is to find out the exact GT and AG ended sequences. Then it identifies the true and false GT and AG ended sequences among those candidate sequences. In this paper, we survey research works on splice site prediction based on support vector machine (SVM). The basic difference between these research works is nucleotide encoding technique and SVM kernel selection. Some methods encode the DNA sequence in a sparse way whereas others encode in a probabilistic manner. The encoded sequences serve as input of SVM. The task of SVM is to classify them using its learning model. The accuracy of classification largely depends on the proper kernel selection for sequence data as well as a selection of kernel parameter. We observe each encoding technique and classify them according to their similarity. Then we discuss about kernel and their parameter selection. Our survey paper provides a basic understanding of encoding approaches and proper kernel selection of SVM for splice site prediction.