• Title/Summary/Keyword: SVM Model

Search Result 714, Processing Time 0.029 seconds

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

Android Malware Detection Using Permission-Based Machine Learning Approach (머신러닝을 이용한 권한 기반 안드로이드 악성코드 탐지)

  • Kang, Seongeun;Long, Nguyen Vu;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.617-623
    • /
    • 2018
  • This study focuses on detection of malicious code through AndroidManifest permissoion feature extracted based on Android static analysis. Features are built on the permissions of AndroidManifest, which can save resources and time for analysis. Malicious app detection model consisted of SVM (support vector machine), NB (Naive Bayes), Gradient Boosting Classifier (GBC) and Logistic Regression model which learned 1,500 normal apps and 500 malicious apps and 98% detection rate. In addition, malicious app family identification is implemented by multi-classifiers model using algorithm SVM, GPC (Gaussian Process Classifier) and GBC (Gradient Boosting Classifier). The learned family identification machine learning model identified 92% of malicious app families.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

The Model using SVM and Decision Tree for Intrusion Detection (SVM과 데이터마이닝을 이용한 혼합형 침입 탐지 모델)

  • Eom Nam-Gyeong;U Seong-Hui;Lee Sang-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.283-286
    • /
    • 2006
  • 안전한 네트워크를 운영하기 위해, 네트워크 침입 탐지에서 오탐지율은 줄이고 정탐지율을 높이는 것은 매우 중요한 일이다. 최근 얼굴 인식, 생물학 정보칩 분류 등에서 활발히 적용 연구되는 SVM을 침입탐지에 이용하면 실시간 탐지가 가능하므로 탐지율의 향상을 기대할 수 있다. 그러나 입력 값들을 벡터공간에 나타낸 후 계산된 값을 근거로 분류하므로, SVM만으로는 이산형의 데이터는 입력 정보로 사용할 수 없다는 단점을 가지고 있다. 따라서 이 논문에서는 데이터마이닝의 의사결정트리를 SVM에 결합시킨 침입 탐지 모델을 제안하고 이에 대한 성능을 평가한 결과 기존 방식에 비해 침입 탐지율, F-P오류율, F-N오류율에 있어 각각 5.6%, 0.16%, 0.82% 향상이 있음을 보였다.

  • PDF

The Hybrid Model using SVM and Decision Tree for Intrusion Detection (SVM과 의사결정트리를 이용한 혼합형 침입탐지 모델)

  • Um, Nam-Kyoung;Woo, Sung-Hee;Lee, Sang-Ho
    • The KIPS Transactions:PartC
    • /
    • v.14C no.1 s.111
    • /
    • pp.1-6
    • /
    • 2007
  • In order to operate a secure network, it is very important for the network to raise positive detection as well as lower negative detection for reducing the damage from network intrusion. By using SVM on the intrusion detection field, we expect to improve real-time detection of intrusion data. However, due to classification based on calculating values after having expressed input data in vector space by SVM, continuous data type can not be used as any input data. Therefore, we present the hybrid model between SVM and decision tree method to make up for the weak point. Accordingly, we see that intrusion detection rate, F-P error rate, F-N error rate are improved as 5.6%, 0.16%, 0.82%, respectively.

Use of Support Vector Machines in Biped Humanoid Robot for Stable Walking (안정적인 보행을 위한 이족 휴머노이드 로봇에서의 서포트 벡터 머신 이용)

  • Kim Dong-Won;Park Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.315-319
    • /
    • 2006
  • Support vector machines in biped humanoid robot are presented in this paper. The trajectory of the ZMP in biped walking robot poses an important criterion for the balance of the walking robots but complex dynamics involved make robot control difficult. We are establishing empirical relationships based on the dynamic stability of motion using SVMs. SVMs and kernel method have become very popular method for learning from examples. We applied SVM to model the practical humanoid robot. Three kinds of kernels are employed also and each result has been compared. As a result, SVM based on kernel method have been found to work well. Especially SVM with RBF kernel function provides the best results. The simulation results show that the generated ZMP from the SVM can be improve the stability of the biped walking robot and it can be effectively used to model and control practical biped walking robot.

Object Tracking Algorithm of Swarm Robot System for using Polygon Based Q-Learning and Cascade SVM (다각형 기반의 Q-Learning과 Cascade SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyung-Chang;Sim, Kwee-Bo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Cascade Support Vector Machine algorithm for object search with multiple robots. We organized an experimental environment with ten mobile robots, twenty five obstacles, and an object, and then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and Cascade SVM to enhance the fusion model with DBAM and ABAM process.

  • PDF

Jointly Learning Model using modified Latent Structural SVM (Latent Structural SVM을 확장한 결합 학습 모델)

  • Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.70-73
    • /
    • 2013
  • 자연어처리에서는 많은 모듈들이 파이프라인 방식으로 연결되어 사용되나, 이 경우 앞 단계의 오류가 뒷 단계에 누적되는 문제와 앞 단계에서 뒷 단계의 정보를 사용하지 못한다는 단점이 있다. 본 논문에서는 파이프라인 방식의 문제를 해결하기 위해 사용되는 일반적인 결합 학습 방법을 확장하여, 두 작업이 동시에 태깅된 학습 데이터뿐만 아니라 한 작업만 태깅된 학습데이터도 동시에 학습에 사용할 수 있는 결합 학습 모델을 Latent Structural SVM을 확장하여 제안한다. 실험 결과, 기존의 한국어 띄어쓰기와 품사 태깅 결합 모델의 품사 태깅 성능이 96.99%였으나, 본 논문에서 제안하는 결합 학습 모델을 이용하여 대용량의 한국어 띄어쓰기 학습데이터를 추가로 학습한 결과 품사 태깅 성능이 97.20%까지 향상 되었다.

  • PDF

Retrieval of oceanic primary production using support vector machines

  • Tang, Shilin;Chen, Chuqun;Zhan, Haigang
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.114-117
    • /
    • 2006
  • One of the most important tasks of ocean color observations is to determine the distribution of phytoplankton primary production. A variety of bio-optical algorithms have been developed estimate primary production from these parameters. In this communication, we investigated the possibility of using a novel universal approximator-support vector machines (SVMs)-as the nonlinear transfer function between oceanic primary production and the information that can be directly retrieved from satellite data. The VGPM (Vertically Generalized Production Model) dataset was used to evaluate the proposed approach. The PPARR2 (Primary Production Algorithm Round Robin 2) dataset was used to further compare the precision between the VGPM model and the SVM model. Using this SVM model to calculate the global ocean primary production, the result is 45.5 PgC $yr^{-1}$, which is a little higher than the VGPM result.

  • PDF