• Title/Summary/Keyword: SVM Model

Search Result 714, Processing Time 0.031 seconds

SVM-Based EEG Signal for Hand Gesture Classification (서포트 벡터 머신 기반 손동작 뇌전도 구분에 대한 연구)

  • Hong, Seok-min;Min, Chang-gi;Oh, Ha-Ryoung;Seong, Yeong-Rak;Park, Jun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.508-514
    • /
    • 2018
  • An electroencephalogram (EEG) evaluates the electrical activity generated by brain cell interactions that occur during brain activity, and an EEG can evaluate the brain activity caused by hand movement. In this study, a 16-channel EEG was used to measure the EEG generated before and after hand movement. The measured data can be classified as a supervised learning model, a support vector machine (SVM). To shorten the learning time of the SVM, a feature extraction and vector dimension reduction by filtering is proposed that minimizes motion-related information loss and compresses EEG information. The classification results showed an average of 72.7% accuracy between the sitting position and the hand movement at the electrodes of the frontal lobe.

Developing an Ensemble Classifier for Bankruptcy Prediction (부도 예측을 위한 앙상블 분류기 개발)

  • Min, Sung-Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.139-148
    • /
    • 2012
  • An ensemble of classifiers is to employ a set of individually trained classifiers and combine their predictions. It has been found that in most cases the ensembles produce more accurate predictions than the base classifiers. Combining outputs from multiple classifiers, known as ensemble learning, is one of the standard and most important techniques for improving classification accuracy in machine learning. An ensemble of classifiers is efficient only if the individual classifiers make decisions as diverse as possible. Bagging is the most popular method of ensemble learning to generate a diverse set of classifiers. Diversity in bagging is obtained by using different training sets. The different training data subsets are randomly drawn with replacement from the entire training dataset. The random subspace method is an ensemble construction technique using different attribute subsets. In the random subspace, the training dataset is also modified as in bagging. However, this modification is performed in the feature space. Bagging and random subspace are quite well known and popular ensemble algorithms. However, few studies have dealt with the integration of bagging and random subspace using SVM Classifiers, though there is a great potential for useful applications in this area. The focus of this paper is to propose methods for improving SVM performance using hybrid ensemble strategy for bankruptcy prediction. This paper applies the proposed ensemble model to the bankruptcy prediction problem using a real data set from Korean companies.

DCT-based Digital Dropout Detection using SVM (SVM을 이용한 DCT 기반의 디지털 드롭아웃 검출)

  • Song, Gihun;Ryu, Byungyong;Kim, Jaemyun;Ahn, Kiok;Chae, Oksam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.190-200
    • /
    • 2014
  • The video-based system of the broadcasters and the video-related institutions have shifted from analogical to digital in worldwide. This migration process can generate a defect, digital dropout, in the quality of the contents. Moreover, there are limited researches focused on these kind of defects and those related have limitations. For that reason, we are proposing a new method for feature extraction emphasizing in the peculiar block pattern of digital dropout based on discrete cosine transform (DCT). For classification of error block, we utilize support vector machine (SVM) which can manage feature vectors efficiently. Further, the proposed method overcome the limitation of the previous one using continuity of frame by frame. It is using only the information of a single frame and works better even in the presence of fast moving objects, without the necessity of specific model or parameter estimation. Therefore, this approach is capable of detecting digital dropout only with minimal complexity.

User Sentiment Analysis on Amazon Fashion Product Review Using Word Embedding (워드 임베딩을 이용한 아마존 패션 상품 리뷰의 사용자 감성 분석)

  • Lee, Dong-yub;Jo, Jae-Choon;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • In the modern society, the size of the fashion market is continuously increasing both overseas and domestic. When purchasing a product through e-commerce, the evaluation data for the product created by other consumers has an effect on the consumer's decision to purchase the product. By analysing the consumer's evaluation data on the product the company can reflect consumer's opinion which can leads to positive affect of performance to company. In this paper, we propose a method to construct a model to analyze user's sentiment using word embedding space formed by learning review data of amazon fashion products. Experiments were conducted by learning three SVM classifiers according to the number of positive and negative review data using the formed word embedding space which is formed by learning 5.7 million Amazon review data.. Experimental results showed the highest accuracy of 88.0% when learning SVM classifier using 50,000 positive review data and 50,000 negative review data.

Modified Direct Torque Control using Algorithm Control of Stator Flux Estimation and Space Vector Modulation Based on Fuzzy Logic Control for Achieving High Performance from Induction Motors

  • Rashag, Hassan Farhan;Koh, S.P.;Abdalla, Ahmed N.;Tan, Nadia M.L.;Chong, K.H.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.369-380
    • /
    • 2013
  • Direct torque control based on space vector modulation (SVM-DTC) protects the DTC transient merits. Furthermore, it creates better quality steady-state performance in a wide speed range. The modified method of DTC using SVM improves the electrical magnitudes of asynchronous machines, such as minimizing the stator current distortions, the stator flux with electromagnetic torque without ripple, the fast response of the rotor speed, and the constant switching frequency. In this paper, the proposed method is based on two new control strategies for direct torque control with space vector modulation. First, fuzzy logic control is used instead of the PI torque and a PI flux controller to minimizing the torque error and to achieve a constant switching frequency. The voltages in the direct and quadratic reference frame ($V_d$, $V_q$) are achieved by fuzzy logic control. In this scheme, the switching capability of the inverter is fully utilized, which improves the system performance. Second, the close loop of stator flux estimation based on the voltage model and a low pass filter is used to counteract the drawbacks in the open loop of the stator flux such as the problems saturation and dc drift. The response of this new control strategy is compared with DTC-SVM. The experimental and simulation results demonstrate that the proposed control topology outperforms the conventional DTC-SVM in terms of system robustness and eliminating the bad outcome of dc-offset.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet (혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we proposed a method of baseline correction for analysis of Raman spectra of platelets from Alzheimer's disease (AD) transgenic mice. Measured Raman spectra include the meaningful information and unnecessary noise which is composed of baseline and additive noise. The Raman spectrum is divided into the local region including several peaks and the spectrum of the region is modeled by curve fitting using Gaussian model. The additive noise is clearly removed from the process of replacing the original spectrum with the fitted model. The baseline correction after interpolating the local minima of the fitted model with linear, piecewise cubic Hermite and cubic spline algorithm. The baseline corrected models extract the feature with principal component analysis (PCA). The classification result of support vector machine (SVM) and maximum $a$ posteriori probability (MAP) using linear interpolation method showed the good performance about overall number of principal components, especially SVM gave the best performance which is about 97.3% true classification average rate in case of piecewise cubic Hermite algorithm and 5 principal components. In addition, it confirmed that the proposed baseline correction method compared with the previous research result could be effectively applied in the analysis of the Raman spectra of platelet.

Sleep Deprivation Attack Detection Based on Clustering in Wireless Sensor Network (무선 센서 네트워크에서 클러스터링 기반 Sleep Deprivation Attack 탐지 모델)

  • Kim, Suk-young;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • Wireless sensors that make up the Wireless Sensor Network generally have extremely limited power and resources. The wireless sensor enters the sleep state at a certain interval to conserve power. The Sleep deflation attack is a deadly attack that consumes power by preventing wireless sensors from entering the sleep state, but there is no clear countermeasure. Thus, in this paper, using clustering-based binary search tree structure, the Sleep deprivation attack detection model is proposed. The model proposed in this paper utilizes one of the characteristics of both attack sensor nodes and normal sensor nodes which were classified using machine learning. The characteristics used for detection were determined using Long Short-Term Memory, Decision Tree, Support Vector Machine, and K-Nearest Neighbor. Thresholds for judging attack sensor nodes were then learned by applying the SVM. The determined features were used in the proposed algorithm to calculate the values for attack detection, and the threshold for determining the calculated values was derived by applying SVM.Through experiments, the detection model proposed showed a detection rate of 94% when 35% of the total sensor nodes were attack sensor nodes and improvement of up to 26% in power retention.

Fault Classification Model Based on Time Domain Feature Extraction of Vibration Data (진동 데이터의 시간영역 특징 추출에 기반한 고장 분류 모델)

  • Kim, Seung-il;Noh, Yoojeong;Kang, Young-jin;Park, Sunhwa;Ahn, Byungha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • With the development of machine learning techniques, various types of data such as vibration, temperature, and flow rate can be used to detect and diagnose abnormalities in machine conditions. In particular, in the field of the state monitoring of rotating machines, the fault diagnosis of machines using vibration data has long been carried out, and the methods are also very diverse. In this study, an experiment was conducted to collect vibration data from normal and abnormal compressors by installing accelerometers directly on rotary compressors used in household air conditioners. Data segmentation was performed to solve the data shortage problem, and the main features for the fault classification model were extracted through the chi-square test after statistical and physical features were extracted from the vibration data in the time domain. The support vector machine (SVM) model was developed to classify the normal or abnormal conditions of compressors and improve the classification accuracy through the hyperparameter optimization of the SVM.

Computer Vision Approach for Phenotypic Characterization of Horticultural Crops (컴퓨터 비전을 활용한 토마토, 파프리카, 멜론 및 오이 작물의 표현형 특성화)

  • Seungri Yoon;Minju Shin;Jin Hyun Kim;Ho Jeong Jeong;Junyoung Park;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • This study explored computer vision methods using the OpenCV open-source library to characterize the phenotypes of various horticultural crops. In the case of tomatoes, image color was examined to assess ripeness, while support vector machine (SVM) and histogram of oriented gradients (HOG) methods effectively identified ripe tomatoes. For sweet pepper, we visualized the color distribution and used the Gaussian mixture model for clustering to analyze its post-harvest color characteristics. For the quality assessment of netted melons, the LAB (lightness, a, b) color space, binary images, and depth mapping were used to measure the net patterns of the melon. In addition, a combination of depth and color data proved successful in identifying flowers of different sizes and distances in cucumber greenhouses. This study highlights the effectiveness of these computer vision strategies in monitoring the growth and development, ripening, and quality assessment of fruits and vegetables. For broader applications in agriculture, future researchers and developers should enhance these techniques with plant physiological indicators to promote their adoption in both research and practical agricultural settings.