• Title/Summary/Keyword: SVM Model

Search Result 714, Processing Time 0.036 seconds

IGARCH and Stochastic Volatility : Case Study

  • Hwang, S.Y.;Park, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.835-841
    • /
    • 2005
  • IGARCH and Stochastic Volatility Model(SVM, for short) have frequently provided useful approximations to the real aspects of financial time series. This article is concerned with modeling various Korean financial time series using both IGARCH and stochastic volatility models. Daily data sets with sample period ranging from 2000 and 2004 including KOSPI, KOSDAQ and won-dollar exchange rate are comparatively analyzed using IGARCH and SVM.

  • PDF

Research about auto-segmentation via SVM (SVM을 이용한 자동 음소분할에 관한 연구)

  • 권호민;한학용;김창근;허강인
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2220-2223
    • /
    • 2003
  • In this paper we used Support Vector Machines(SVMs) recently proposed as the loaming method, one of Artificial Neural Network, to divide continuous speech into phonemes, an initial, medial, and final sound, and then, performed continuous speech recognition from it. Decision boundary of phoneme is determined by algorithm with maximum frequency in a short interval. Recognition process is performed by Continuous Hidden Markov Model(CHMM), and we compared it with another phoneme divided by eye-measurement. From experiment we confirmed that the method, SVMs, we proposed is more effective in an initial sound than Gaussian Mixture Models(GMMs).

  • PDF

Estimating Basin of Attraction for Multi-Basin Processes Using Support Vector Machine

  • Lee, Dae-Won;Lee, Jae-Wook
    • Management Science and Financial Engineering
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2012
  • A novel method of transient stability analysis is presented in this paper. The proposed method extracts data points near the basin-of-attraction boundary and then builds a support vector machine (SVM) model learned from the generated data. The constructed SVM classifier has been shown to reduce dramatically the conservativeness of the estimated basin of attraction.

Political Opinion Mining from Article Comments using Deep Learning

  • Sung, Dae-Kyung;Jeong, Young-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Policy polls, which investigate the degree of support that the policy has for policy implementation, play an important role in making decisions. As the number of Internet users increases, the public is actively commenting on their policy news stories. Current policy polls tend to rely heavily on phone and offline surveys. Collecting and analyzing policy articles is useful in policy surveys. In this study, we propose a method of analyzing comments using deep learning technology showing outstanding performance in various fields. In particular, we designed various models based on the recurrent neural network (RNN) which is suitable for sequential data and compared the performance with the support vector machine (SVM), which is a traditional machine learning model. For all test sets, the SVM model show an accuracy of 0.73 and the RNN model have an accuracy of 0.83.

Downscaling Technique of the Monthly Precipitation Data using Support Vector Machine (지지벡터기구를 이용한 월 강우량자료의 Downscaling 기법)

  • Kim, Seong-Won;Kyoung, Min-Soo;Kwon, Hyun-Han;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.112-115
    • /
    • 2009
  • The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as support vector machine neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the monthly precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 2 grid points including $127.5^{\circ}E/35^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, which produced the best results from the previous study. The output node of neural networks models consist of the monthly precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of SVM-NNM and MLP-NNM performances for the downscaling of the monthly precipitation data. We should, therefore, construct the credible monthly precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.

  • PDF

SVM-based Protein Name Recognition using Edit-Distance Features Boosted by Virtual Examples (가상 예제와 Edit-distance 자질을 이용한 SVM 기반의 단백질명 인식)

  • Yi, Eun-Ji;Lee, Gary-Geunbae;Park, Soo-Jun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.95-100
    • /
    • 2003
  • In this paper, we propose solutions to resolve the problem of many spelling variants and the problem of lack of annotated corpus for training, which are two among the main difficulties in named entity recognition in biomedical domain. To resolve the problem of spotting valiants, we propose a use of edit-distance as a feature for SVM. And we propose a use of virtual examples to automatically expand the annotated corpus to resolve the lack-of-corpus problem. Using virtual examples, the annotated corpus can be extended in a fast, efficient and easy way. The experimental results show that the introduction of edit-distance produces some improvements in protein name recognition performance. And the model, which is trained with the corpus expanded by virtual examples, outperforms the model trained with the original corpus. According to the proposed methods, we finally achieve the performance 75.80 in F-measure(71.89% in precision,80.15% in recall) in the experiment of protein name recognition on GENIA corpus (ver.3.0).

  • PDF

Human Ear Detection for Biometries (생체인식을 위한 귀 영역 검출)

  • Kim Young-Baek;Rhee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.813-816
    • /
    • 2005
  • Ear detection is an important part of an non-invasive ear recognition system. In this paper we propose human ear detection from side face images. The proposed method is made by imitating the human recognition process using feature information and color information. First, we search face candidate area in an input image by using 'skin-color model' and try to find an ear area based on edge information. Then, to verify whether it is the ear area or not, we use the SVM (Support Vector Machine) based on a statistical theory. The method shows high detection ratio in indoors environment with stable illumination.

Nonlinear Chemical Plant Modeling using Support Vector Machines: pH Neutralization Process is Targeted (SVM을 이용한 비선형 화학공정 모델링: pH 중화공정에의 적용 예)

  • Kim, Dong-Won;Yoo, Ah-Rim;Yang, Dae-Ryook;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1178-1183
    • /
    • 2006
  • This paper is concerned with the modeling and identification of pH neutralization process as nonlinear chemical system. The pH control has been applied to various chemical processes such as wastewater treatment, chemical, and biochemical industries. But the control of the pH is very difficult due to its highly nonlinear nature which is the titration curve with the steepest slope at the neutralization point. We apply SVM which have become an increasingly popular tool for machine teaming tasks such as classification, regression or detection to model pH process which has strong nonlinearities. Linear and radial basis function kernels are employed and each result has been compared. So SVH based on kernel method have been found to work well. Simulations have shown that the SVM based on the kernel substitution including linear and radial basis function kernel provides a promising alternative to model strong nonlinearities of the pH neutralization but also to control the system.

Mechanical verification logic and first test results for the Euclid spacecraft

  • Calvi, Adriano;Bastia, Patrizia;Suarez, Manuel Perez;Neumann, Philipp;Carbonell, Albert
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2020
  • Euclid is an optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and the formation of structures over cosmological timescales. The Euclid spacecraft mechanical architecture comprises the Payload Module (PLM) and the Service Module (SVM) connected by an interface structure designed to maximize thermal and mechanical decoupling. This paper shortly illustrates the mechanical system of the spacecraft and the mechanical verification philosophy which is based on the Structural and Thermal Model (STM), built at flight standard for structure and thermal qualification and the Proto Flight Model (PFM), used to complete the qualification programme. It will be submitted to a proto-flight test approach and it will be suitable for launch and flight operations. Within the overall verification approach crucial mechanical tests have been successfully performed (2018) on the SVM platform and on the sunshield (SSH) subsystem: the SVM platform static test, the SSH structure modal survey test and the SSH sine vibration qualification test. The paper reports the objectives and the main results of these tests.

Gender Classification of Speakers Using SVM

  • Han, Sun-Hee;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.59-66
    • /
    • 2022
  • This research conducted a study classifying gender of speakers by analyzing feature vectors extracted from the voice data. The study provides convenience in automatically recognizing gender of customers without manual classification process when they request any service via voice such as phone call. Furthermore, it is significant that this study can analyze frequently requested services for each gender after gender classification using a learning model and offer customized recommendation services according to the analysis. Based on the voice data of males and females excluding blank spaces, the study extracts feature vectors from each data using MFCC(Mel Frequency Cepstral Coefficient) and utilizes SVM(Support Vector Machine) models to conduct machine learning. As a result of gender classification of voice data using a learning model, the gender recognition rate was 94%.