• 제목/요약/키워드: SVDD

검색결과 50건 처리시간 0.042초

학습을 위한 네거티브 데이터가 존재하지 않는 경우의 microRNA 타겟 예측 방법 (microRNA target prediction when negative data is not available for learning)

  • 이제근;김수진;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.212-216
    • /
    • 2008
  • 기존의 알려진 데이터에 기반하여 분류 알고리즘을 통해 새로운 생물학적인 사실을 예측하는 것은 생물학 연구에 매우 유용하다. 하지만 생물학 데이터 분류 문제에서 positive 데이터만 존재할 뿐, negative 데이터는 존재하지 않는 경우가 많다. 이와 같은 상황에서는 많은 경우에 임의로 negative data를 구성하여 사용하게 된다. 하지만, negative 데이터는 실제로 negative임이 보장된 것이 아니고, 임의로 생성된 데이터의 특성에 따라 분류 성능 및 모델의 특성에 많은 차이를 보일 수 있다. 따라서 본 논문에서는 단일 클래스 분류 알고리즘 중 하나인 support vector data description(SVDD) 방법을 이용하여 실제 microRNA target 예측 문제에서 positive 데이터만을 이용하여 학습하고 분류를 수행하였다. 이를 통해 일반적인 이진 분류 방법에 비해 이와 같은 방법이 실제 생물학 문제에 보다 적합하게 적용될 수 있음을 확인한다.

  • PDF

서포트 벡터 데이터 서술을 이용한 대표 얼굴 영상 합성 (Synthesis of Face Exemplars using Support Vector Data Description)

  • 이상웅;박주영;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.835-837
    • /
    • 2005
  • 최근 얼굴 인식은 사용자의 편의성을 포함한 다양한 장점으로 인하여 생체 인식 시장에서 주요 기술로 대두되고 있다. 그러나 조명 변화에 기인한 얼굴 인식 성능의 저하는 실용화에 걸림돌이 되고 있는 실정이다. 따라서 조명 변화에 따른 얼굴의 외형 변화를 분석하는 연구들이 세계적으로 활발히 진행되고 있다. 그러나 기존 방법들은 다수의 등록 영상이나 조명에 대한 사전 정보가 필요하거나 실시간으로 구현되기 어렵기 때문에 실용 시스템에 적용하기는 어려운 실정이다. 따라서, 본 논문에서는, 여러 조명 영상들로 구성된 학습 데이터를 이용하여, 조명에 대한 정보가 없는 한 장의 입력 영상을 분석하는 방법을 제안한다. 제안된 방법은 SVDD를 이용하여 학습 데이터의 여러 조면 영상들로부터 입력 영상의 조명과 같은 대표영상을 합성하고 이 대표영상들의 선형 조합을 이용하여 입력 영상을 표현한다. 제안 방법의 효율성을 검증하기 위하여 공인 얼굴 데이터베이스들을 이용하여, 기존 방법들과 비교 실험을 수행하였으며, 조명 변화가 큰 영상에서도 안정된 조명 변화의 분석이 가능하였다.

  • PDF

상점 관리 서비스 로봇에서의 실시간 얼굴 인식 및 학습 시스템 (Real-Time Face Recognition and learning system for intelligent Store Management Service Robot)

  • 안호석;강우성;나진희;최진영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.935-936
    • /
    • 2006
  • In this paper, we have applied a real-time face processor includes detection, recognition, and learning to a intelligent store management service robot. We use the Haar classifier and adaboost learning algorithm for face detection. For face recognition and learning, a PCA algorithm and a SVDD algorithm is used. We have developed a store management service robot and applied these algorithms to verify the performance.

  • PDF

A New Anchor Shot Detection System for News Video Indexing

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.133-138
    • /
    • 2008
  • In this paper, we propose a novel anchor shot detection system, named to MASD (Multi-phase Anchor Shot Detection), which is a core step of the preprocessing process for the news video analysis. The proposed system is composed of four modules and operates sequentially: 1) skin color detection module for reducing the candidate face regions; 2) face detection module for finding the key-frames with a facial data; 3) vector representation module for the key-frame images using a non-negative matrix factorization; 4) one class SVM module for determining the anchor shots using a support vector data description. Besides the qualitative analysis, our experiments validate that the proposed system shows not only the comparable accuracy to the recently developed methods, but also more faster detection rate than those of others.

무선랜 신호세기를 이용한 효율적인 위치인식에 관한 연구 (A Study for efficient location estimation using WLAN)

  • 이인철;공영배;장형준;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1823-1824
    • /
    • 2007
  • 핸드폰, PDA, Laptop이 보편화 되면서 이를 이용한 위치 인식 기술의 중요성이 높아지고 있다. 이러한 위치기반 서비스(LBS : Location Based Service)는 GPS를 이용한 실외 서비스와 WLAN, Zigbee, UWB 등을 이용한 실내 서비스로 나눌 수 있다. 본 논문에서는 이미 많은 수의 기반시설(AP : Access Point)가 구축되어 있는 무선랜 기반의 효과적인 위치 측정 기법에 관한 연구를 모색 해보고자 한다. 각 AP에서 받은 신호세기(SS : Signal Strength)를 데이터 베이스에 저장한 후, 이동단말기(MU : Mobile Unit)의 위치가 요구되는 장소에서 다시 신호세기를 측정하여 데이터 베이스와 비교하여 가장 적합한 위치 데이터 정보를 리턴하는 핑거프린트(Fingerprint) 방식을 소개한다. 그리고 불안정한 신호 세기 데이터를 판별하기 위하여 단일 클래스 SVM 기법인 SVDD(Support Vector Data Description)을 이용하였다.

  • PDF

다중 클래스 SVM을 이용한 계층적 인터넷 애플리케이션 트래픽의 분류 (Hierarchical Internet Application Traffic Classification using a Multi-class SVM)

  • 유재학;이한성;임영희;김명섭;박대희
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.7-14
    • /
    • 2010
  • 본 논문에서는 인터넷 애플리케이션 트래픽 분류방법으로 대표되는 포트 번호 및 페이로드 정보를 이용하는 방법론의 한계점을 극복하는 대안으로서, SVM을 기반으로 한 계층적 인터넷 애플리케이션 트래픽 분류 시스템을 제안한다. 제안된 시스템은 이진 분류기인 SVM과 단일클래스 SVM의 대표적 모델인 SVDD를 계층적으로 결합한 새로운 트래픽 분류 모델로서, 학내에서 수집된 양방향 트래픽 플로우 데이터에 대한 최적의 속성 부분집합을 선택한 후, P2P 트래픽과 non-P2P 트래픽을 빠르게 분류하는 첫 번째 계층, P2P 트래픽들을 파일공유, 메신저, TV로 분류하는 두 번째 계층, 그리고 전체 16가지 애플리케이션 트래픽별로 세분화 분류하는 세 번째 계층으로 구성된다. 제안된 시스템은 인터넷 애플리케이션 트래픽을 coarse 혹은 fine하게 분류함으로써 효율적인 시스템의 자원 관리, 안정적인 네트워크 환경의 지원, 원활한 대역폭의 사용, 그리고 적절한 QoS를 보장할 수 있다. 또한, 새로운 애플리케이션 트래픽이 추가되더라도 전체 시스템을 재학습시킬 필요 없이 새로운 애플리케이션 트래픽만을 추가 학습함으로써 시스템의 점증적 갱신 및 확장성도 가능하다. 실험을 통하여 제안된 시스템의 성능을 검증한다.

지도학습기법을 이용한 비선형 다변량 공정의 비정상 상태 탐지 (Abnormality Detection to Non-linear Multivariate Process Using Supervised Learning Methods)

  • 손영태;윤덕균
    • 산업공학
    • /
    • 제24권1호
    • /
    • pp.8-14
    • /
    • 2011
  • Principal Component Analysis (PCA) reduces the dimensionality of the process by creating a new set of variables, Principal components (PCs), which attempt to reflect the true underlying process dimension. However, for highly nonlinear processes, this form of monitoring may not be efficient since the process dimensionality can't be represented by a small number of PCs. Examples include the process of semiconductors, pharmaceuticals and chemicals. Nonlinear correlated process variables can be reduced to a set of nonlinear principal components, through the application of Kernel Principal Component Analysis (KPCA). Support Vector Data Description (SVDD) which has roots in a supervised learning theory is a training algorithm based on structural risk minimization. Its control limit does not depend on the distribution, but adapts to the real data. So, in this paper proposes a non-linear process monitoring technique based on supervised learning methods and KPCA. Through simulated examples, it has been shown that the proposed monitoring chart is more effective than $T^2$ chart for nonlinear processes.

한우 발정기 발성음의 특징 벡터 생성 (Feature Vector Generation of Korean Cow Oestrus Vocalization)

  • 이종욱;정용화;김석;장홍희;박대희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1154-1157
    • /
    • 2012
  • 축산농가의 경제성과 직결되는 암소 발정기의 조기 탐지는 IT 농 축산 학계에서도 매우 중요한 문제 중 하나이며 반듯이 해결해야만 하는 문제로 알려져 있다. 이를 해결하기 위한 다양한 연구 방법들 중, 본 논문에서는 소리 센서 환경에서의 암소의 발정기 탐지 시스템에 관한 연구를 대상으로 한다. 특히, 발정기 발성음의 특징 벡터 생성에 초점을 맞춘다. 특징은 크게 분별력과 차원이라는 두 가지 기준에 대해 우수해야 한다. 즉, 좋은 특징이란 서로 다른 부류를 잘 분별해 주어야 할 뿐만 아니라, 특징 벡터의 차원이 낮을수록 계산 효율이 좋고 차원의 저주에서 멀어 진다. 본 논문에서는 통계학에 기초한 체계적인 특징 벡터 생성에 관한 알고리즘을 제안하고, 실제 축사에서 녹취한 한우 발정기 발성음을 대상으로 낮은 차원의 특징 벡터 생성 과정을 보인다. 또한 이상상황 탐지기로 잘 알려진 단일 클래스 SVM의 대표 모델인 SVDD를 탐지기로 설정하여 생성된 특징 벡터의 분별력을 실험적으로 검증한다.

다변량 관리도를 활용한 블로거 정서 변화 탐지 (Detection of the Change in Blogger Sentiment using Multivariate Control Charts)

  • 문정훈;이성임
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.903-913
    • /
    • 2013
  • 최근 소셜 네크워크 서비스의 발달로 인해 개인의 감정이나 의견을 표현하는 소셜 데이터들이 하루에도 수백만 건씩 생산되고 있다. 또한 소셜 데이터는 개인의 의견에 또 다른 생각을 더하는 등 정보의 생산과 소비가 누구나 가능해짐으로써 사회현상을 잘 반영해주는 도구로 성장하고 있다. 본 연구에서는 블로그에 올라온 부정적인 감성어들을 분석하여 블로거의 감성변화를 탐지하기 위해 다변량 관리도를 이용하고자 한다. 이를 위해 2008년 1월 1일부터 2009년 12월 31일 사이에 생성되었던 모든 블로그를 사용하였다. 품질 특성치가 다변량으로 주어지는 경우 호텔링의 $T^2$ 관리도가 널리 사용된다. 그러나 이 관리도는 품질 특성치들의 분포가 다변량 정규분포라는 가정을 하고 있어, 비정규 다변량 자료에 대한 관리도의 성능은 좋지 않다. 이에 본 논문에서는 Sun과 Tsung (2003)이 제안한 써포트 벡터머신에서 단일 집합 분류 기법 중 하나인 SVDD(support vector data description) 알고리즘과 이를 확장한 K-관리도를 소개하고, 실제 데이터 분석에 적용해 보았다.

SVM을 이용한 SNMP MIB에서의 트래픽 폭주 공격 탐지 (Traffic Flooding Attack Detection on SNMP MIB Using SVM)

  • 유재학;박준상;이한성;김명섭;박대희
    • 정보처리학회논문지C
    • /
    • 제15C권5호
    • /
    • pp.351-358
    • /
    • 2008
  • DoS/DDoS로 대표되는 트래픽 폭주 공격은 대상 시스템뿐만 아니라 네트워크 대역폭 및 프로세서 처리능력, 시스템 자원 등을 고갈시킴으로써 네트워크에 심각한 장애를 유발하기 때문에, 신속한 트래픽 폭주 공격의 탐지는 안정적인 서비스의 제공 및 시스템의 운영에 필수요건이다. 전통적인 패킷 수집을 통한 DoS/DDoS의 탐지방법은 공격에 대한 상세한 분석은 가능하나 설치의 확장성 부족, 고가의 고성능 분석시스템의 요구, 신속한 탐지를 보장하지 못하는 문제점을 갖고 있다. 본 논문에서는 MIB 정보 갱신 시점 단위로 수집된 SNMP MIB 객체 정보를 바탕으로 Support Vector Data Description(SVDD)을 이용하여 보다 빠르고 정확한 침입탐지와 쉬운 확장성, 저비용탐지 및 정확한 공격유형별 분류를 가능케 하는 새로운 시스템을 설계 및 구현하였다. 실험을 통하여 만족스러운 침입 탐지율과 안전한 False Negative Rate(FNR), 공격유형별 분류율 수치 등을 확인함으로써 제안된 시스템의 성능을 검증하였다.