• Title/Summary/Keyword: SVC encryption

Search Result 9, Processing Time 0.039 seconds

An Adaptive Scalable Encryption Scheme for the Layered Architecture of SVC Video (SVC 비디오의 계층적 구조에 적응적인 스케일러블 암호화 기법)

  • Seo, Kwang-Deok;Kim, Jae-Gon;Kim, Jin-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.695-703
    • /
    • 2010
  • In this paper, we propose an adaptive scalable encryption scheme for the layered architecture of SVC video. The proposed method determines an appropriate set of encryption algorithms to be applied for the layers of SVC by considering the importance and priority relationship among the SVC video layers. Unlike the conventional encryption method based on a fixed encryption algorithm for the whole video layers, the proposed method applies differentiated encryption algorithms with different encryption strength the importance of the video layers. Thereupon, higher security could be maintained for the lower video layer including more important data, while lower encryption strength could be applied for the higher video layer with relatively less important data. The effectiveness of the proposed adaptive scalable encryption method is proved by extensive simulations.

Control of Layered Encryption for SVC Video Streaming (SVC 비디오 스트리밍을 위한 계층적 암호화 제어 기법)

  • Hwang, Jae-Hyung;Seo, Kwang-Deok;Jung, Soon-Heung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1617-1625
    • /
    • 2010
  • Recently, the standardization of SVC technology which can provide adaptive video quality in diverse service environments has been completed. This paper proposes a layered encryption technique which takes into account the prioritized layer characteristics of SVC and control constant encryption complexity satisfying the target computational complexity. In particular, it analyzes the importance of NAL unit in the SVC video layer and suggests a method to apply appropriate encryption complexity proper for it. The effectiveness of the proposed method is proved through the comparison of time required for encryption and the reconstructed video quality using imperfect decryption key.

Layered Access Control Mechanism using Hybrid-based Method for SVC Media Transmission (SVC 미디어의 전송을 위한 하이브리드 방식의 계층별 접근제어 메커니즘)

  • Kwon, Hyeok-Chan;Kim, Sang-Choon
    • Convergence Security Journal
    • /
    • v.11 no.3
    • /
    • pp.47-54
    • /
    • 2011
  • To protect SVC(Scalable Video Coding) media, the encryption mechanism need to consider two fundamental issues; First, What is to be encrypted? Second, When encryption is performed with respect to compression? In this paper, we analyze the several encryption approaches with regard to the above issue. And we propose hybrid-based protection mechanism. This mechanism ensures the media scalability, layered access control and reuse protected content. In this experiment the proposed mechanism generates under 3% security overhead against standard scalable video coding.

Conditional Access Control for Encrypted SVC Bitstream (암호화된 SVC 비트스트림에서 조건적 접근제어 방법)

  • Won Yong-Geun;Bae Tae-Meon;Ro Yong-Man
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.87-99
    • /
    • 2006
  • In this paper, we propose a method of conditional access control for encrypted SVC(scalable video coding) bitstream. The main purpose of the proposition is to provide a SVC suitable encryption algorithm and a efficient method for conditional access control using encrypted SVC bitstream. We analyzed requirements for conditional access control of a SVC bitstream. And based on the analysis, we proposed encryption algorithm suitable for SVC bitstream and a method of conditional access control of the encryped bitstream. The proposed conditional access control for encrypted SVC bitstream is performed by bitsream extraction and selective decryption. We verified the usefulness of the proposed method through experiments.

Scrambling Technology using Scalable Encryption in SVC (SVC에서 스케일러블 암호화를 이용한 스크램블링 기술)

  • Kwon, Goo-Rak
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.575-581
    • /
    • 2010
  • With widespread use of the Internet and improvements in streaming media and compression technology, digital music, video, and image can be distributed instantaneously across the Internet to end-users. However, most conventional Digital Right Management are often not secure and not fast enough to process the vast amount of data generated by the multimedia applications to meet the real-time constraints. The SVC offers temporal, spatial, and SNR scalability to varying network bandwidth and different application needs. Meanwhile, for many multimedia services, security is an important component to restrict unauthorized content access and distribution. This suggests the need for new cryptography system implementations that can operate at SVC. In this paper, we propose a new scrambling encryption for reserving the characteristic of scalability in MPEG4-SVC. In the base layer, the proposed algorithm is applied and performed the selective scambling. And it encrypts various MVS and intra-mode scrambling in the enhancement layer. In the decryption, it decrypts each encrypted layers by using another encrypted keys. Throughout the experimental results, the proposed algorithms have low complexity in encryption and the robustness of communication errors.

A Layered Protection Scheme for Scalable Video Coding (스케일러블 비디오 부호화에 대한 계층적 보호 기법)

  • Hendry, Hendry;Kim, Mun-Churl;Hahm, Sang-Jin;Lee, Keun-Sik;Park, Keung-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.307-312
    • /
    • 2006
  • Protection to the multimedia contents is inevitable to ensure that only authorized users be able to access the protected contents for consumption. Since protection mechanisms need to be designed efficiently by exploiting the type of the contents, we propose a protection scheme for the video bitstream encoded by Scalable Video Coding (SVC) technique. Our scheme exploits the property of SVC in which a video is encoded into spatial, temporal, and quality scalability layers. By applying our proposed protection scheme to the appropriate scalability layers we can effectively control the SVC contents completely or partially. Each layer can be flexibly protected with different encryption keys or even with different encryption algorithms. The algorithms that are used to protect each layer are described by the standardized protection description tool, which is the MPEG-21 Intellectual Property Management and Protection (IPMP) Components. In this paper, we present the design of the proposed layered SVC protection scheme, its implementation and experimental results. The experiment result shows that the proposed layered SVC protection scheme is very effective and can easily be applied.

  • PDF

SVC and CAS Combining Scheme for Support Multi-Device Watching Environment (다중기기 시청환경을 지원하기 위한 SVC와 CAS 결합 기법)

  • Son, Junggab;Oh, Heekuck;Kim, SangJin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1111-1120
    • /
    • 2013
  • CAS used in IPTV or DTV has an environment of sending single type of contents through single streaming. But it can be improved to support users' various video applications through single streaming by combining with SVC. For such an environment, efficiency should be firstly considered, and hierarchical key management methods for billing policy by service levels should be applied. This study aims to look into considerations to apply SVC to CAS and propose SVC encryption in CAS environment. The security of the proposed scheme is based on the safety of CAS and oneway hash function. If the proposed scheme is applied, scalability can be efficiently provided even in the encrypted contents and it is possible to bill users according to picture quality. In addition, the test results show that SVC contents given by streaming service with the average less than 10%overhead can be safely protected against illegal uses.

SVC: Secure VANET-Assisted Remote Healthcare Monitoring System in Disaster Area

  • Liu, Xuefeng;Quan, Hanyu;Zhang, Yuqing;Zhao, Qianqian;Liu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1229-1248
    • /
    • 2016
  • With the feature of convenience and low cost, remote healthcare monitoring (RHM) has been extensively used in modern disease management to improve the quality of life. Due to the privacy of health data, it is of great importance to implement RHM based on a secure and dependable network. However, the network connectivity of existing RHM systems is unreliable in disaster area because of the unforeseeable damage to the communication infrastructure. To design a secure RHM system in disaster area, this paper presents a Secure VANET-Assisted Remote Healthcare Monitoring System (SVC) by utilizing the unique "store-carry-forward" transmission mode of vehicular ad hoc network (VANET). To improve the network performance, the VANET in SVC is designed to be a two-level network consisting of two kinds of vehicles. Specially, an innovative two-level key management model by mixing certificate-based cryptography and ID-based cryptography is customized to manage the trust of vehicles. In addition, the strong privacy of the health information including context privacy is taken into account in our scheme by combining searchable public-key encryption and broadcast techniques. Finally, comprehensive security and performance analysis demonstrate the scheme is secure and efficient.

Design of Security Framework for Next Generation IPTV Services (차세대 IPTV 서비스를 위한 보안 프레임워크 설계)

  • Lee, Seung-Min;Nah, Jae-Hoon;Seo, Dong-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.33-42
    • /
    • 2010
  • With the emergence of increasingly complex networks and diverse user terminals, demand for the next generation IPTV service is rapidly growing. It enables any content to seamlessly be reused on the diverse terminals as well as be broadcasted in real-time through the complex networks. In this paper, a novel security framework is proposed for the real-time and reusable IPTV services. The proposed framework is advantageous over the conventional content protection techniques in easily producing the scalable content with lightweight, perceptual, transcodable, and adjustable security features. It does not only ensure end-to-end security over the entire service range based on a single security mechanism, but also can control a level of security while dynamically transcoding the original content. This approach basically performs selective encryption during and after the compression using scalable video coding. The suitability of the proposed approach is demonstrated through experiments with a practical service scenario. Therefore, it is expected that security technology alone could practically contribute to creating new business opportunities for IPTV services.